Skip to main content

Advertisement

Log in

Elucidating the Electronic Structure of the Ligated Cuboctahedral Palladium Cluster [Pd134-C7H7)6]2+

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The electronic structure of the recently reported cuboctahedral [Pd134-Tr)6]2+ (Tr = C7H7) cluster is analyzed using DFT calculations. Results indicate that the bonding in this cluster can be described from the formal starting point of a [Pd13]2− core interacting with a partly reduced [Tr6]4+ ligand shell. The orbital interactions between the two fragments are strong, owing in particular to the very strong accepting ability of the surrounding ligands. The (moderate) Pd–Pd bonding character is in part due to the occupation of the strongly bonding in-phase combination of the 5s(Pd) orbitals (the 1S jellium level) and for another part from through-bond interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Mendeleev (1869). Z. Chem. 12, 405–406.

    Google Scholar 

  2. E. G. Mednikov and L. F. Dahl (2009). J. Chem. Educ. 86, 1135.

    Article  CAS  Google Scholar 

  3. E. G. Mednikov and L. F. Dahl (2010). Philos. Trans. R. Soc. A 368, 1301–1332.

    Article  CAS  Google Scholar 

  4. O. Belyakova and Y. Slovokhotov (2003). Russ. Chem. Bull. 52, 2299–2327.

    Article  CAS  Google Scholar 

  5. C. Femoni, M. C. Iapalucci, F. Kaswalder, G. Longoni, and S. Zacchini (2006). Coord. Chem. Rev. 250, 1580–1640.

    Article  CAS  Google Scholar 

  6. I. Ciabatti, C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). J. Clust. Sci. 25, 115–146.

    Article  CAS  Google Scholar 

  7. E. G. Mednikov, M. C. Jewell, and L. F. Dahl (2007). J. Am. Chem. Soc. 129, 11619–11630.

    Article  CAS  Google Scholar 

  8. R. Marchal, G. Manca, E. Furet, S. Kahlal, J.-Y. Saillard, and J.-F. Halet (2015). J. Cluster Sci. 26, 41–51.

    Article  CAS  Google Scholar 

  9. J.-Y. Saillard and J.-F. Halet (2016). Struct. Bond. 169, 157–179.

    Article  CAS  Google Scholar 

  10. G. Frapper and J.-F. Halet in A. R. Oganov, A. G. Kvashnin, and G. Saleh (eds.), Computational Materials Discovery (Royal Society of Chemistry, London, 2019), pp. 320–351.

    Google Scholar 

  11. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141–2143.

    Article  CAS  Google Scholar 

  12. Z. Lin, T. Slee, and D. M. P. Mingos (1990). J. Chem. Phys. 142, 321–334.

    CAS  Google Scholar 

  13. W. A. de Heer (1993). Rev. Mod. Phys. 65, 611–676.

    Article  Google Scholar 

  14. D. M. P. Mingos Structural and Electronic Paradigms in Cluster Chemistry (Springer, Berlin, 1997).

    Book  Google Scholar 

  15. P. Jena, S. N. Khanna, and B. K. Rao Clusters and Nano-Assemblies: Physical and Biological Systems (World Scientific, Singapore, 2005).

    Book  Google Scholar 

  16. S. N. Khanna and P. Jena (2008). Phys. Rev. Lett. 51, 13705–13716.

    Google Scholar 

  17. H. Häkkinen (2008). Chem. Soc. Rev. 37, 1847–1859.

    Article  Google Scholar 

  18. M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, and H. Häkkinen (2008). Proc. Natl. Acad. Sci. U.S.A. 105, 9157–9162.

    Article  CAS  Google Scholar 

  19. M. Elian, M. M.-L. Chen, D. M. P. Mingos, and R. Hoffmann (1976). Inorg. Chem. 15, 1148–1155.

    Article  CAS  Google Scholar 

  20. M. Teramoto, K. Iwata, H. Yamaura, K. Kurashima, K. Miyazawa, Y. Kurashige, K. Yamamoto, and T. Murahashi (2018). J. Am. Chem. Soc. 140, 12682–12686.

    Article  CAS  Google Scholar 

  21. C. E. Briant, B. R. C. Theobald, J. W. White, L. K. Bell, D. M. P. Mingos, and A. J. Welch (1981). J. Chem. Soc., Chem. Commun., 201–202.

  22. M. W. Heaven, A. Dass, P. S. White, K. M. Holt, and R. W. Murray (2008). J. Am. Chem. Soc. 130, 3754–3755.

    Article  CAS  Google Scholar 

  23. M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin (2008). J. Am. Chem. Soc. 130, 5883–5885.

    Article  CAS  Google Scholar 

  24. Y. Negishi, K. Nobusada, and T. Tsukuda (2005). J. Am. Chem. Soc. 127, 5261–5270.

    Article  CAS  Google Scholar 

  25. C. Femoni, M. C. Iapalucci, G. Longoni, S. Zacchini, and S. Zarra (2011). J. Am. Chem. Soc. 133, 2406–2409.

    Article  CAS  Google Scholar 

  26. I. Ciabatti, C. Femoni, M. C. Iapalucci, G. Longoni, S. Zacchini, and S. Zarra (2012). Nanoscale 4, 4166–4177.

    Article  CAS  Google Scholar 

  27. V. G. Albano, A. Ceriotti, P. Chini, G. Ciani, S. Martinengo, and W. M. Anker (1975). J. Chem. Soc., Chem. Commun., 859–860.

  28. R. Bau, M. H. Drabnis, L. Garlaschelli, W. T. Klooster, Z. Xie, T. F. Koetzle, and S. Martinengo (1997). Science 275, 1099–1102.

    Article  CAS  Google Scholar 

  29. R. Gautier and J.-F. Halet (1998). J. Organomet. Chem. 565, 217–224.

    Article  CAS  Google Scholar 

  30. R. P. B. Silalahi, K. K. Chakrahai, J.-H. Liao, S. Kahlal, Y.-C. Liu, M.-H. Chiang, J.-Y. Saillard, and C. W. Liu (2018). Chem. Asian J. 13, 500–504.

    Article  CAS  Google Scholar 

  31. S. Kahlal, C.-W. Liu, and J.-Y. Saillard (2017). Inorg. Chem. 56, 1209–1215.

    Article  Google Scholar 

  32. J. L. Vidal (1981). J. Organomet. Chem. 213, 351–363.

    Article  CAS  Google Scholar 

  33. C. Femoni, I. Ciabatti, M. C. Iapalucci, S. Ruggieri, and S. Zacchini (2016). Progr. Nat. Sci. Mater. Int. 26, 428–461.

    Article  Google Scholar 

  34. D. M. P. Mingos (1985). J. Chem. Soc., Chem. Commun., 1352–1354.

  35. R. L. Johnston and D. M. P. Mingos (1985). J. Organomet. Chem. 280, 419–428.

    Article  CAS  Google Scholar 

  36. R. L. Johnston and D. M. P. Mingos (1987). Struct. Bond. 68, 29–87.

    Article  Google Scholar 

  37. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, Revision A.1 (Gaussian Inc, Wallingford CT, 2009).

    Google Scholar 

  38. A. D. Becke (1988). Phys. Rev. A 38, 3098–3100.

    Article  CAS  Google Scholar 

  39. J. P. Perdew (1986). Phys. Rev. B 33, 8822–8824.

    Article  CAS  Google Scholar 

  40. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold, NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin (Madison, WI, 2001). http://www.chem.wisc.edu/nbo5.

  41. S. I. Gorelsky, AOMix Program. http://www.sg-chem.net.

  42. G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders, and T. Ziegler (2001). J. Comput. Chem. 22, 931–967.

    Article  Google Scholar 

  43. ADF2016, SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands. http://www.scm.com.

  44. E. V. Lenthe and E. J. Baerends (2003). J. Comput. Chem. 24, 1142–1156.

    Article  Google Scholar 

  45. S. Grimme, S. Ehrlich, and L. Goerigk (2011). J. Comput. Chem. 32, 1456–1465.

    Article  CAS  Google Scholar 

  46. S. Sharma, K. K. Chakrahari, J.-Y. Saillard, and C. W. Liu (2018). Acc. Chem. Res. 51, 2475–2483.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jianyu Wei thanks the China Scholarship Council for a Ph.D. scholarship. The authors are grateful to GENCI (Grand Equipment National de Calcul Intensif) for HPC resources (Grant A0050807367).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-François Halet or Jean-Yves Saillard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Kahlal, S., Halet, JF. et al. Elucidating the Electronic Structure of the Ligated Cuboctahedral Palladium Cluster [Pd134-C7H7)6]2+. J Clust Sci 30, 1227–1233 (2019). https://doi.org/10.1007/s10876-019-01616-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01616-6

Keywords

Navigation