Skip to main content
Log in

NiB10, NiB11, NiB12, and NiB13+: Half-Sandwich Complexes with the Universal Coordination Bonding Pattern of σ Plus π Double Delocalization

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Transition-metal-doped boron clusters have received considerable attention in recent years. The experimentally observed planar or quasi-planar C2h B10(I), C2v B11(II), C3v B12(III), and C2v B13+ (IV) are known to be boron analogs of benzene. Extensive global minimum searches and first-principles theory investigations performed herein indicate that doping these aromatic boron clusters with a nickel atom generates the closed-shell half-sandwich complexes C2v NiB10(1,1A1), Cs NiB11(2, 1A), C3v NiB12(3, 1A1), and Cs NiB13+ (4, 1A) which are all well-defined global minima of the systems with the coordination numbers of CN = 10, 11, 12, and 13, respectively. Detailed bonding analyses indicate that these Ni-doped boron complexes are effectively stabilized by coordination interactions between the Ni center and aromatic B −/0/+n ligands (n = 10–13) and follow the universal coordination bonding pattern of σ plus π double delocalization. Molecular dynamics simulations show that, among these complex clusters, NiB11(2) behaves like a Wankel motor at room temperature with the B3 inner wheel rotating almost freely inside the quasi-rotating B8 outer bearing in a concerted mechanism, revealing typical bonding fluctuations/fluxionalities in a molecular motor due to thermal vibrations. The IR, Raman and electronic spectra of the concerned species are computationally simulated to facilitate their experimental characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, and L. S. Wang (2003). Angew. Chem. Int. Ed. 42, 6004.

    Article  CAS  Google Scholar 

  2. H. J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.

    Article  CAS  PubMed  Google Scholar 

  3. A. P. Sergeeva, Z. A. Piazza, C. Romanescu, W. L. Li, A. I. Boldyrev, and L. S. Wang (2012). J. Am. Chem. Soc 134, 18065.

    Article  CAS  PubMed  Google Scholar 

  4. W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev (2010). Nat. Chem. 2, 202.

    Article  CAS  PubMed  Google Scholar 

  5. J. O. C. Jiménez-Halla, R. Islas, T. Heine, and G. Merino (2010). Angew. Chem. Int. Ed. 49, 5668.

    Article  CAS  Google Scholar 

  6. I. A. Popov, Z. A. Piazza, W. L. Li, L. S. Wang, and A. I. Boldyrev (2013). J. Chem. Phys. 139, 144307.

    Article  CAS  PubMed  Google Scholar 

  7. W. L. Li, Y. F. Zhao, H. S. Hu, J. Li, and L. S. Wang (2014). Angew. Chem. Int. Ed. 53, 5540.

    Article  CAS  Google Scholar 

  8. Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, and L. S. Wang (2014). Nat. Commun. 5, 3113.

    Article  CAS  PubMed  Google Scholar 

  9. A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev (2014). Acc. Chem. Res. 47, 1349.

    Article  CAS  PubMed  Google Scholar 

  10. W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, and L. S. Wang (2014). J. Am. Chem. Soc. 136, 12257.

    Article  CAS  PubMed  Google Scholar 

  11. Q. Chen, G. F. Wei, W. J. Tian, H. Bai, Z. P. Liu, H. J. Zhai, and S. D. Li (2014). Phys. Chem. Chem. Phys. 16, 18282.

    Article  CAS  PubMed  Google Scholar 

  12. X. M. Luo, T. Jian, L. J. Cheng, W. L. Li, Q. Chen, R. Li, H. J. Zhai, S. D. Li, A. I. Boldyrev, J. Li, and L. S. Wang (2017). Chem. Phys. Lett. 683, 336.

    Article  CAS  Google Scholar 

  13. W. L. Li, R. Pal, Z. A. Piazza, X. C. Zeng, and L. S. Wang (2015). J. Chem. Phys. 142, 204305.

    Article  CAS  PubMed  Google Scholar 

  14. Z. A. Piazza, I. A. Popov, W. L. Li, R. Pal, X. C. Zeng, A. I. Boldyrev, and L. S. Wang (2014). J. Chem. Phys. 141, 034303.

    Article  CAS  PubMed  Google Scholar 

  15. H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang (2014). Nat. Chem. 6, 727.

    Article  CAS  PubMed  Google Scholar 

  16. Y. J. Wang, Y. F. Zhao, W. L. Li, T. Jian, Q. Chen, X. R. You, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2016). J. Chem. Phys. 144, 064307.

    Article  CAS  PubMed  Google Scholar 

  17. H. R. Li, T. Jian, W. L. Li, C. Q. Miao, Y. J. Wang, Q. Chen, X. M. Luo, K. Wang, H. J. Zhai, S. D. Li, and L. S. Wang (2016). Phys. Chem. Chem. Phys. 18, 29147.

    Article  CAS  PubMed  Google Scholar 

  18. Q. Chen, W. J. Tian, L. Y. Feng, H. G. Lu, Y. W. Mu, H. J. Zhai, S. D. Li, and L. S. Wang (2017). Nanoscale 9, 4550.

    Article  CAS  PubMed  Google Scholar 

  19. Q. Chen, W. L. Li, X. Y. Zhao, H. R. Li, L. Y. Feng, H. J. Zhai, S. D. Li, and L. S. Wang (2017). Eur. J. Inorg. Chem. 38, 4546–4551.

    Article  CAS  Google Scholar 

  20. B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang (2005). Proc. Natl. Acad. Sci. USA 102, 961.

    Article  CAS  PubMed  Google Scholar 

  21. E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, and R. Ahlrichs (2007). Angew. Chem. Int. Ed. 46, 8503.

    Article  CAS  Google Scholar 

  22. G. Martínez-Guajardo, A. P. Sergeeva, A. I. Boldyrev, T. Heine, J. M. Ugalde, and G. Merino (2011). Chem. Commun. 47, 6242.

    Article  CAS  Google Scholar 

  23. J. Zhang, A. P. Sergeeva, M. Sparta, and A. N. Alexandrova (2012). Angew. Chem., Int. Ed. 51, 8512.

    Article  CAS  Google Scholar 

  24. D. Moreno, S. Pan, L. L. Zeonjuk, R. Islas, E. Osorio, G. Martínez-Guajardo, P. K. Chattaraj, T. Heine, and G. Merino (2014). Chem. Commun. 50, 8140.

    Article  CAS  Google Scholar 

  25. Y. J. Wang, X. Y. Zhao, Q. Chen, H. J. Zhai, and S. D. Li (2015). Nanoscale 7, 16054.

    Article  PubMed  Google Scholar 

  26. Y. J. Wang, X. R. You, Q. Chen, L. Y. Feng, K. Wang, T. Ou, X. Y. Zhao, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys. 18, 15774.

    Article  CAS  PubMed  Google Scholar 

  27. Y. G. Yang, D. M. Jia, Y. J. Wang, H. J. Zhai, Y. Mana, and S. D. Li (2017). Nanoscale 9, 1443.

    Article  CAS  PubMed  Google Scholar 

  28. C. Romanescu, T. R. Galeev, W. L. Li, A. I. Boldyrev, and L. S. Wang (2013). Acc. Chem. Res. 46, 350.

    Article  CAS  PubMed  Google Scholar 

  29. T. R. Galeev, C. Romanescu, W. L. Li, L. S. Wang, and A. I. Boldyrev (2012). Angew. Chem., Int. Ed. 51, 2101.

    Article  CAS  Google Scholar 

  30. T. Heine and G. Merino (2012). Angew. Chem., Int. Ed. 51, 4275.

    Article  CAS  Google Scholar 

  31. I. A. Popov, W. L. Li, Z. A. Piazza, A. I. Boldyrev, and L. S. Wang (2014). J. Phys. Chem. A 118, 8098.

    Article  CAS  PubMed  Google Scholar 

  32. L. Liu, D. Moreno, E. Osorio, A. C. Castro, S. Pan, P. K. Chattaraj, T. Heine, and G. Merino (2016). RSC Adv. 6, 27177.

    Article  CAS  Google Scholar 

  33. W. L. Li, T. Jian, X. Chen, H. R. Li, T. T. Chen, X. M. Luo, S. D. Li, J. Li, and L. S. Wang (2017). Chem. Commun. 53, 1587.

    Article  CAS  Google Scholar 

  34. B. L. Chen, W. G. Sun, X. Y. Kuang, C. Lu, X. X. Xia, H. X. Shi, and G. Maroulis (2018). Inorg. Chem. 57, 343.

    Article  CAS  PubMed  Google Scholar 

  35. L. Q. Zhao, X. Qu, Y. C. Wang, J. Lv, L. J. Zhang, Z. Y. Hu, G. R. Gu, and Y. M. Ma (2017). J. Phys.: Condens. Matter 29, 265401.

    Google Scholar 

  36. Y. Q. Wang, X. Wu, and J. J. Zhao (2018). J. Clust. Sci. https://doi.org/10.1007/s10876-018-1369-3.

    Article  Google Scholar 

  37. T. T. Chen, W. L. Li, T. Jian, X. Chen, J. Li, and L. S. Wang (2017). Angew. Chem. Int. Ed. 56, 6916.

    Article  CAS  Google Scholar 

  38. H. R. Li, H. Liu, X. Q. Lu, W. Y. Zan, X. X. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, and S. D. Li (2018). Nanoscale. https://doi.org/10.1039/C8NR01087K.

    Article  PubMed  PubMed Central  Google Scholar 

  39. A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2011). J. Chem. Phys. 134, 224304.

    Article  CAS  PubMed  Google Scholar 

  40. X. Chen, Y. F. Zhao, L. S. Wang, and J. Li (2017). Comput. Theor. Chem. 1107, 57.

    Article  CAS  Google Scholar 

  41. D. J. Wales and H. A. Scheraga (1999). Science 285, 1368.

    Article  CAS  PubMed  Google Scholar 

  42. C. Adamo and V. Barone (1999). J. Chem. Phys. 110, 6158.

    Article  CAS  Google Scholar 

  43. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72, 650.

    Article  CAS  Google Scholar 

  44. J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401.

    Article  CAS  PubMed  Google Scholar 

  45. F. Li, P. Jin, D. E. Jiang, L. Wang, S. B. Zhang, J. J. Zhao, and Z. F. Chen (2012). J. Chem. Phys. 136, 074302.

    Article  CAS  PubMed  Google Scholar 

  46. M. J. Frisch, et al. Gaussian 09, revision A.2 (Gaussian Inc., Wallingford, 2009).

    Google Scholar 

  47. G. D. Purvis and R. J. Bartlett (1982). J. Chem. Phys. 76, 1910.

    Article  CAS  Google Scholar 

  48. J. Čižek (1969). Adv. Chem. Phys. 14, 35.

    Google Scholar 

  49. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head- Gordon (1989). Chem. Phys. Lett. 157, 479.

    Article  CAS  Google Scholar 

  50. K. Fukui (1981). Acc. Chem. Res. 14, 363.

    Article  CAS  Google Scholar 

  51. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005). Comput. Phys. Commun. 167, 103.

    Article  CAS  Google Scholar 

  52. D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.

    Article  CAS  PubMed  Google Scholar 

  53. U. Varetto Molekel 5.4.0.8 (Swiss National Supercomputing Center, Manno, 2009).

    Google Scholar 

  54. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  55. W. N. Lipscomb (1966). Science 153, 373.

    Article  CAS  PubMed  Google Scholar 

  56. S. Jalife, L. Liu, S. Pan, J. L. Cabellos, E. Osorio, C. Lu, T. Heine, K. J. Donald, and G. Merino (2016). Nanoscale 8, 17639.

    Article  CAS  PubMed  Google Scholar 

  57. G. J. Wang, M. F. Zhou, J. T. Goettel, G. J. Schrobilgen, J. Su, J. Li, T. Schloder, and S. Riedel (2014). Nature 514, 475.

    Article  CAS  PubMed  Google Scholar 

  58. M. R. Fagiani, X. W. Song, P. Petkov, S. Debnath, S. Gewinner, W. Schöllkopf, T. Heine, A. Fielicke, and K. R. Asmis (2017). Angew. Chem. Int. Ed. 56, 501.

    Article  CAS  Google Scholar 

  59. R. Bauernschmitt and R. Ahlrichs (1996). Chem. Phys. Lett. 256, 454.

    Article  CAS  Google Scholar 

  60. H. R. Li, X. X. Tian, X. M. Luo, M. Yan, Y. W. Mu, H. G. Lu, and S. D. Li (2017). Sci. Rep. 7, 5701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21720102006 to S.-D. Li, 21473106 to H.-G. Lu, U1510103 to X.-X. Tian).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Xin Tian, Hai-Gang Lu or Si-Dian Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XY., Luo, XM., Tian, XX. et al. NiB10, NiB11, NiB12, and NiB13+: Half-Sandwich Complexes with the Universal Coordination Bonding Pattern of σ Plus π Double Delocalization. J Clust Sci 30, 115–121 (2019). https://doi.org/10.1007/s10876-018-1457-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1457-4

Keywords

Navigation