Skip to main content
Log in

Antiferromagnetic Coupling in a New Mn(III) Schiff Base Complex with Open-Cubane Core: Structure, Spectroscopic and Luminescence Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new open-cubane MnIII, [{(H2O)MnIIIL}{MnIIIL}]2·2(CH3OH).2(CH3CH2OH)·2Cl, 1 where H 2 L=[N-(2-hydroxyethyl)-3-methoxysalicylaldimine] has been synthesized and characterized by element analysis, FT-IR, solid UV–Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows an open-cubane tetranuclear complex. The Mn1 (Mn1i) ions is hexacoordinate by NO5 donor sets while the Mn2 (Mn2i) is pentacoordinate by NO4 donor sets. The solid state photoluminescence properties of complex 1 and its ligand H 2 L have been investigated under UV light at 349 nm in the visible region. H 2 L exhibits blue emission while complex 1 shows orange-red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex 1 in the range 2–300 K indicate an antiferromagnetic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. G. Carrell, S. Cohen, and G. C. Dismukes (2002). J. Mol. Catal. A Chem. 187, 3.

    Article  CAS  Google Scholar 

  2. J. Liu, Z. Liu, S. Yuan, and J. Liu (2013). J. Mol. Struct. 1037, 191.

    Article  CAS  Google Scholar 

  3. N. Hoshino, T. Ito, M. Nihei, and H. Oshio (2003). Inorg. Chem. Commun. 6, 377.

    Article  CAS  Google Scholar 

  4. L. P. Nitha, R. Aswathy, N. E. Mathews, B. Sindhu Kumari, and K. Mohanan (2014). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 154.

    Article  CAS  Google Scholar 

  5. W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, and G. Christou (2002). Nature 416, 406.

    Article  Google Scholar 

  6. D. Gatteschi and R. Sessoli (2003). Angew. Chem. Int. Ed. 42, 268.

    Article  CAS  Google Scholar 

  7. S. Mandal, G. Rosair, J. Ribas, and D. Bandyopadhyay (2009). Inorg. Chim. Acta 362, 2200.

    Article  CAS  Google Scholar 

  8. C. Lee and C. M. Aikens (2015). J. Phys. Chem. A 119, 9325.

    Article  CAS  Google Scholar 

  9. H. Hou (2011). Materials (Basel) 4, 1693.

    Article  CAS  Google Scholar 

  10. S. Q. Zang, L. H. Cao, R. Liang, H. W. Hou, and T. C. W. Mak (2012). Cryst. Growth Des. 12, 1830.

    Article  CAS  Google Scholar 

  11. J. K. Nath, A. Mondal, A. K. Powell, and J. B. Baruah (2014). Cryst. Growth Des. 14, 4735.

    Article  CAS  Google Scholar 

  12. R. Zhang, Z.-H. Ni, L.-F. Zhang, and H.-Z. Kou (2014). Bull. Korean Chem. Soc. 35, 1965.

    Article  CAS  Google Scholar 

  13. C. E. Dubé, D. W. Wright, S. Pal, P. J. Bonitatebus, and W. H. Armstrong (1998). J. Am. Chem. Soc. 120, 3704.

    Article  Google Scholar 

  14. M. K. Chan and W. H. Armstrong (1991). J. Am. Chem. Soc. 113, 5055.

    Article  CAS  Google Scholar 

  15. J. Yoo, A. Yamaguchi, M. Nakano, J. Krzystek, W. E. Streib, L. Brunel, H. Ishimoto, G. Christou, and D. N. Hendrickson (2001). Inorg. Chem. 40, 4604.

    Article  CAS  Google Scholar 

  16. D. Li, H. Wang, S. Wang, Y. Pan, C. Li, J. Dou, and Y. Song (2010). Inorg. Chem. 49, 3688.

    Article  CAS  Google Scholar 

  17. P. J. Bettle, L. N. Dawe, M. U. Anwar, and L. K. Thompson (2011). Eur. J. Inorg. Chem. 5036.

  18. E. A. Karlsson, B.-L. Lee, T. Åkermark, E. V. Johnston, M. D. Kärkäs, J. Sun, Ö. Hansson, J.-E. Bäckvall, and B. Åkermark (2011). Angew. Chem. Int. Ed. 50, 11715.

    Article  CAS  Google Scholar 

  19. S. Mukhopadhyay, J. Staples, W. H. Armstrong, and R. Purdue (2002). Chem. Commun. 4, 864.

    Article  Google Scholar 

  20. H. Chen, J. W. Faller, R. H. Crabtree, and G. W. Brudvig (2004). J. Am. Chem. Soc. 126, 7345.

    Article  CAS  Google Scholar 

  21. C. Mn, V. Mckee, and W. Shepard (1985). J. Chem. Soc. Chem. Commun. 4, 158.

    Google Scholar 

  22. J. Z. Wu, E. Sellitto, G. P. A. Yap, J. Sheats, and G. C. Dismukes (2004). Inorg. Chem. 43, 5795.

    Article  CAS  Google Scholar 

  23. G. Aromí, S. Bhaduri, P. Artús, K. Folting, and G. Christou (2002). Inorg. Chem. 41, 805.

    Article  Google Scholar 

  24. Z. S. Bai, Z. P. Qi, Y. Lu, Q. Yuan, and W. Y. Sun (2008). Cryst. Growth Des. 8, 1924.

    Article  CAS  Google Scholar 

  25. H. Chen, M.-N. Collomb, C. Duboc, G. Blondin, E. Rivière, J. W. Faller, R. H. Crabtree, and G. W. Brudvig (2005). Inorg. Chem. 44, 9567.

    Article  CAS  Google Scholar 

  26. C. C. Stoumpos, N. Lalioti, I. A. Gass, K. Gkotsis, A. A. Kitos, H. Sartzi, C. J. Milios, C. P. Raptopoulou, A. Terzis, E. K. Brechin, and S. P. Perlepes (2009). Polyhedron 28, 2017.

    Article  CAS  Google Scholar 

  27. L. B. Jerzykiewicz, J. Utko, M. Duczmal, P. Starynowicz, and P. Sobota (2010). Eur. J. Inorg. Chem. 28, 4492.

    Article  Google Scholar 

  28. C. C. Beedle, C. J. Stephenson, J. Katie, W. Wernsdorfer, D. N. Hendrickson, and K. J. Heroux (2008). Inorg. Chem. 47, 10798.

    Article  CAS  Google Scholar 

  29. H. Kara (2007). Z. Naturforsch. 62, 691.

    Article  CAS  Google Scholar 

  30. Y. Yahsi and H. Kara (2014). Spectrochim. Acta Part A Mol. Biomol Spectrosc. 127, 25.

    Article  CAS  Google Scholar 

  31. Y. Yahsi, E. Gungor, M. B. Coban, and H. Kara (2016). Mol. Cryst. Liq. Cryst. 637, 67.

    Article  CAS  Google Scholar 

  32. H. K. Ara and H. Kara (2008). Anal. Sci. 24, 79.

    Google Scholar 

  33. O. Kahn Molecular Magnetism (VCH Publishers, New York, 1993).

    Google Scholar 

  34. E. Gungor and H. Kara (2015). J. Struct. Chem. 56, 1646.

    Article  CAS  Google Scholar 

  35. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.

    Article  CAS  Google Scholar 

  36. G. M. Sheldrick (2008). Acta Crystallogr. A 64, 112.

    Article  CAS  Google Scholar 

  37. G. M. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem. 71, 3.

    Article  Google Scholar 

  38. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor (1984). J. Chem. Soc. Dalton Trans. 1349.

  39. G. J. Palenik (1997). Inorg. Chem. 36, 4888.

    Article  CAS  Google Scholar 

  40. W. Liu and H. H. Thorp (1993). Inorg. Chem. 32, 4102.

    Article  CAS  Google Scholar 

  41. C. Kocak, G. Oylumluoglu, A. Donmez, M. B. Coban, U. Erkarslan, M. Aygun, and H. Kara (2017). Acta Crystallogr. Sect. C Struct. Chem. 73, 414.

    Article  CAS  Google Scholar 

  42. Z.-L. You and H.-L. Zhu (2004). Z. Für Anorg. Und Allg Chem. 630, 2754.

    Article  CAS  Google Scholar 

  43. E. S. Aazam, A. F. EL Husseiny, and H. M. Al-Amri (2012). Arab. J. Chem. 5, 45.

    Article  CAS  Google Scholar 

  44. E. Gungor (2017). Acta Crystallogr. Sect. C Struct. Chem. 73, 393.

    Article  CAS  Google Scholar 

  45. E. Gungor, S. Celen, D. Azaz, and H. Kara (2012). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 94, 216.

    Article  CAS  Google Scholar 

  46. A. B. Lever Inorganic Electronic Spectroscopy, Vol. 33, Studies in Physical and Theoretical Chemistry (Elsevier, Amsterdam, 1984).

    Google Scholar 

  47. X.-Z. Guo, Z.-Y. Zhang, Z.-L. Li, S.-S. Shi, and S.-S. Chen (2017). Crystals 7, 73.

    Article  Google Scholar 

  48. S.-S. Chen, Q. Liu, Y. Zhao, R. Qiao, L.-Q. Sheng, Z.-D. Liu, S. Yang, and C.-F. Song (2014). Cryst. Growth Des. 14, 3727.

    Article  CAS  Google Scholar 

  49. K. H. He, W. C. Song, Y. W. Li, Y. Q. Chen, and X. H. Bu (2012). Cryst. Growth Des. 12, 1064.

    Article  CAS  Google Scholar 

  50. A. Donmez, M. B. Coban, C. Kocak, G. Oylumluoglu, U. Baisch, and H. Kara (2017). Mol. Cryst. Liq. Cryst. 652, 213.

    Article  CAS  Google Scholar 

  51. A. Donmez, G. Oylumluoglu, M. B. Coban, C. Kocak, M. Aygun, and H. Kara (2017). J. Mol. Struct. 1149, 569.

    Article  CAS  Google Scholar 

  52. B. Valeur Molecular Fluorescence: Principles and Application (Wiley-VCH, Weinheim, 2002).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Research Funds of Balikesir University (BAP–2017/200) for the financial support and Balikesir University, Science and Technology Application and Research Center (BUBTAM) for the use of the Photoluminescence Spectrometer. The authors are also very grateful to Prof. Dr. Andrea Caneschi (Laboratory of Molecular Magnetism, Department of Chemistry, University of Florence) for the use of SQUID magnetometer and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Gungor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gungor, E., Coban, M.B., Kara, H. et al. Antiferromagnetic Coupling in a New Mn(III) Schiff Base Complex with Open-Cubane Core: Structure, Spectroscopic and Luminescence Properties. J Clust Sci 29, 533–540 (2018). https://doi.org/10.1007/s10876-018-1360-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1360-z

Keywords

Navigation