Skip to main content
Log in

Highly Dispersed Platinum Nanoparticles Anchored on Polypyrrole Nanospheres as Anode Catalyst for Methanol Oxidation Reaction

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A novel catalyst of platinum nanoparticles (PtNPs) decorated on polydiallyldimethylammonium chloride (PDDA) functionalized polypyrrole nanospheres (PNS) has been prepared by simple wet-chemical method. PNS with large surface area and high dispersion was prepared by chemical polymerization of pyrrole. PtNPs with uniformed size and high dispersion have been successfully decorated on PDDA functionalized PNS via a sodium borohydride reduction process. The PNS/PtNPs is characterized by transmission electron microscopy, high resolution transmission electron microscopy, energy-dispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy and inductively coupled plasma spectrum instrument. The results show that the PtNPs with sizes of approximate 5–6 nm are uniformly dispersed on the surface of PNS. Compared to Vulcan XC-72 carbon black supported same mass PtNPs (XC-72/PtNPs), PNS/PtNPs show larger mass activity (374 mA mg−1) and stronger poisoning-tolerance (If/Ib = 2.85) due to high dispersion of PtNPs on large surface of PNS. The performance indicates that PNS/PtNPs may be an excellent anode catalyst for methanol oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Jafarian, M. G. Mahjani, H. Heli, F. Gobal, H. Khajehsharifi, and M. H. Hamedi (2003). Electrochim. Acta 48, 3423.

    Article  CAS  Google Scholar 

  2. L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, and S. Hou (2010). Carbon 48, 781.

    Article  CAS  Google Scholar 

  3. H. Tang, J. Chen, L. Nie, D. Liu, W. Deng, Y. Kuang, and S. Yao (2004). J. Colloid Interface Sci. 269, 26.

    Article  CAS  Google Scholar 

  4. J. D. Qiu, G. C. Wang, R. P. Liang, X. H. Xia, and H. W. Yu (2011). J. Phys. Chem. C 115, 15639.

    Article  CAS  Google Scholar 

  5. J. L. G. Fuente, M. V. Martínez-Huerta, S. Rojas, P. Terreros, J. L. G. Fierro, and M. A. Peña (2006). Catal. Today 116, 422.

    Article  Google Scholar 

  6. W. Zhao, X. Zhou, Z. Xue, B. Wu, X. Liu, and X. Lu (2013). J. Mater. Sci. 48, 2566.

    Article  CAS  Google Scholar 

  7. B. Wu, D. Hu, Y. Kuang, Y. Yu, X. Zhang, and J. Chen (2011). Chem. Commun. 47, 5253.

    Article  CAS  Google Scholar 

  8. H. Zhao, L. Li, J. Yang, and Y. Zhang (2008). J. Power Sources 184, 375.

    Article  CAS  Google Scholar 

  9. S. W. Yang, C. S. Hu, D. Liu, T. T. Zhang, T. T. Guo, and F. Liao (2014). J. Clust. Sci. 25, 337.

    Article  CAS  Google Scholar 

  10. H. B. Liao, J. H. Zhu, and Y. L. Hou (2014). Nanoscale 6, 1049.

    Article  CAS  Google Scholar 

  11. B. L. Garc, B. Captain, R. D. Adams, A. B. Hungria, P. A. Midgley, J. M. Thomas, and J. W. Weidner (2007). J. Clust. Sci. 18, 121.

    Article  Google Scholar 

  12. J. Suntivich, Z. C. Xu, C. E. Carlton, J. Kim, B. H. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. H. Schifferli, and Y. Shao-Horn (2013). J. Am. Chem. Soc. 135, 7985.

    Article  CAS  Google Scholar 

  13. H. W. Wang, F. Ye, C. X. Wang, and J. Yang (2011). J. Clust. Sci. 22, 173.

    Article  CAS  Google Scholar 

  14. H. Zhao, J. Yang, L. Li, H. Li, J. Wang, and Y. Zhang (2009). Int. J. Hydrogen Energy 34, 3908.

    Article  CAS  Google Scholar 

  15. S. Guo, S. Dong, and E. Wang (2009). Small 5, 1869.

    Article  CAS  Google Scholar 

  16. A. A. Ponce, C. M. Sims, Z. Liu, K. J. Gaskell, L. C. Lai, W. A. Chiou, and B. W. Eichhorn (2013). J. Mater. Sci. 48, 2670.

    Article  CAS  Google Scholar 

  17. J. S. Oh, N. Luong, T. S. Hwang, J. P. Hong, Y. Lee, and J. D. Nam (2013). J. Mater. Sci. 48, 1127.

    Article  CAS  Google Scholar 

  18. S. L. Zhao, H. J. Yin, L. Du, L. C. He, K. Zhao, L. Chang, G. P. Yin, H. J. Zhao, S. Q. Liu, and Z. Y. Tang (2014). ACS Nano 8, 12660.

    Article  CAS  Google Scholar 

  19. S. L. Zhao, H. J. Yin, L. Du, G. P. Yin, Z. Y. Tang, and S. Q. Liu (2014). J. Mater. Chem. A 2, 3719.

    Article  CAS  Google Scholar 

  20. J. C. Park, J. Kim, and D. Jung (2002). Macromol. Res. 10, 181.

    Article  CAS  Google Scholar 

  21. P. Santhosh, A. Gopalan, and K. P. Lee (2006). J. Catal. 238, 177.

    Article  CAS  Google Scholar 

  22. L. Niu, Q. Li, F. Wei, S. Wu, P. Liu, and X. Cao (2005). J. Electroanal. Chem. 578, 331.

    Article  CAS  Google Scholar 

  23. J. W. Li, J. X. Qiao, Y. Miao, and J. Chen (2008). J. Mater. Sci. 43, 6285.

    Article  Google Scholar 

  24. V. N. Andreev, M. R. Ehrenburg, and V. A. Bogdanovskaya (2014). Prot. Met. Phys. Chem. Surf. 50, 632.

    Article  CAS  Google Scholar 

  25. T. Y. Wu, B. K. Chen, J. K. Chang, P. R. Chen, and C. W. Kuo (2015). Int. J. Hydrogen Energy 40, 2631.

    Article  CAS  Google Scholar 

  26. X. Li, J. Wei, Y. Chai, S. Zhang, and M. Zhou (2015). J. Mater. Sci. 50, 1159.

    Article  CAS  Google Scholar 

  27. Y. Long, B. Yuan, J. R. Niu, X. Tong, and J. T. Ma (2015). New J. Chem. 39, 1179.

    Article  CAS  Google Scholar 

  28. X. Zhang, J. Zhang, W. Song, and Z. Liu (2005). J. Phys. Chem. B 110, 1158.

    Article  Google Scholar 

  29. S. Pirsa and N. Alizadeh (2010). Sens. Actuators B 147, 461.

    Article  CAS  Google Scholar 

  30. J. Li and X. Lin (2007). J. Electrochem. Soc. 154, B1074.

    Article  CAS  Google Scholar 

  31. L. Tian, Y. Qi, and B. Wang (2009). J. Colloid Interface Sci. 333, 249.

    Article  CAS  Google Scholar 

  32. S. Chen, Z. Wei, X. Qi, L. Dong, Y. G. Guo, L. Wan, Z. Shao, and L. Li (2012). J. Am. Chem. Soc. 134, 13252.

    Article  CAS  Google Scholar 

  33. F. Su, Z. Tian, C. K. Poh, Z. Wang, S. H. Lim, Z. Liu, and J. Lin (2009). Chem. Mater. 22, 832.

    Article  Google Scholar 

  34. S. Zhang, H. Wang, N. Zhang, F. Kong, H. Liu, and G. Yin (2012). J. Power Sources 197, 44.

    Article  CAS  Google Scholar 

  35. J. Y. Hong, H. Yoon, and J. Jang (2010). Small 6, 679.

    Article  CAS  Google Scholar 

  36. O. S. Kwon, J. Y. Hong, S. J. Park, Y. Jang, and J. Jang (2010). J. Phys. Chem. C 114, 18874.

    Article  CAS  Google Scholar 

  37. S. W. Chou, C. L. Zhu, S. Neeleshwar, C. L. Chen, Y. Y. Chen, and C. C. Chen (2009). Chem. Mater. 21, 4955.

    Article  CAS  Google Scholar 

  38. S. Guo, S. Dong, and E. Wang (2009). ACS Nano 4, 547.

    Article  Google Scholar 

  39. S. M. Unni, V. M. Dhavale, V. K. Pillai, and S. Kurungot (2010). J. Phys. Chem. C 114, 14654.

    Article  CAS  Google Scholar 

  40. C. Oshima and A. Nagashima (1997). J. Phys. Condens. Matter. 9, 1.

    Article  CAS  Google Scholar 

  41. G. Imamura and K. Saiki (2011). J. Phys. Chem. C 115, 10000.

    Article  CAS  Google Scholar 

  42. G. Selvarani, S. V. Selvaganesh, S. Krishnamurthy, G. V. M. Kiruthika, P. Sridhar, S. Pitchumani, and A. K. Shukla (2009). J. Phys. Chem. C 113, 7461.

    Article  CAS  Google Scholar 

  43. B. Wu, Y. Zhang, Y. Kuang, Y. Yu, X. Zhang, and J. Chen (2012). Chem. Asian J. 7, 190.

    Article  CAS  Google Scholar 

  44. T. Hyeon, S. Han, Y. E. Sung, K. W. Park, and Y. W. Kim (2003). Angew Chem. Int. Ed. 42, 4352.

    Article  CAS  Google Scholar 

  45. Y. G. Zhou, J. J. Chen, F. B. Wang, Z. H. Sheng, and X. H. Xia (2010). Chem. Commun. 46, 5951.

    Article  CAS  Google Scholar 

  46. E. P. Lee, Z. Peng, W. Chen, S. Chen, H. Yang, and Y. Xia (2008). ACS Nano 2, 2167.

    Article  CAS  Google Scholar 

  47. H. Ataee-Esfahani, L. Wang, Y. Nemoto, and Y. Yamauchi (2010). Chem. Mater. 22, 6310.

    Article  CAS  Google Scholar 

  48. S. Guo, S. Dong, and E. Wang (2010). Chem. Commun. 46, 1869.

    Article  CAS  Google Scholar 

  49. S. Guo, J. Li, S. Dong, and E. Wang (2010). J. Phys. Chem. C 114, 15337.

    Article  CAS  Google Scholar 

  50. J. Jiang and A. Kucernak (2003). J. Electroanal. Chem. 543, 187.

    Article  CAS  Google Scholar 

  51. H. Zhang, Y. Yin, Y. Hu, C. Li, P. Wu, S. Wei, and C. Cai (2010). J. Phys. Chem. C 114, 11861.

    Article  CAS  Google Scholar 

  52. N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva (2010). J. Phys. Chem. C 114, 15837.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Applied Chemistry Key Subject of Gansu Province (No. GSACKS20130113), the Natural Science Foundation of Gansu Province (No. 1208RJZM289), the Youth Science and Technology Innovation Projects of Longdong University (No. XYZK1512) and the Doctor Foundation of Longdong University (No. XYBY07), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bowan Wu or Wengao Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Zhao, W., Hou, L. et al. Highly Dispersed Platinum Nanoparticles Anchored on Polypyrrole Nanospheres as Anode Catalyst for Methanol Oxidation Reaction. J Clust Sci 28, 1295–1305 (2017). https://doi.org/10.1007/s10876-016-1132-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1132-6

Keywords

Navigation