Skip to main content

Advertisement

Log in

Structural, Energetic, and Magnetic Properties of Ag\(_{n-m}\)Rh\(_{m}\) and Ag\(_{m}\)Rh\(_{n-m}\) Clusters with \(n \le 20\) and \(m=0,1\)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

At first, a genetic algorithm in combination with either the parametrized density-functional tight-binding method or a Gupta-potential is used to determine the putative global minimum energy structures of mixed Ag\(_{n-m}\)Rh\(_{m}\) and Ag\(_{m}\)Rh\(_{n-m}\) clusters with \(n\le 20\) and \(m=0,1\). Subsequently, the resulting structures are re-optimized with a first-principles method. The results demonstrate that the exchange of a single silver atom by rhodium leads to compact core-shell-like structures with structural motifs well known from the Lennard-Jones system. For the systems of the present study, AgRh\(_{n-1}\) clusters retain their cube-based structural motif and the silver atoms typically avoid the corner positions within a cube if possible. Population analysis of both cluster systems shows that the total magnetic moment is mainly due to unpaired electrons on the rhodium atoms with a small ferro-magnetic contribution of the silver host in Ag\(_{n-1}\)Rh and virtually no contribution to the total magnetic moment from the single silver atom in AgRh\(_{n-1}\) clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Rossler (1900). Chem. Ztg. 2, 733.

    Google Scholar 

  2. R. W. Drier and H. L. Walker (1933). Lond. Edinb. Dublin Phil. Mag. J. Sci. 16(104), 294 (1933).

    Article  CAS  Google Scholar 

  3. A. A. Rudnitskii and A. N. Khotinskaya (1959). Russ. J. Inorg. Chem. 4, 1053.

  4. A. R. Miedema, P. F. de Châtel, and F. R. de Boer (1980). Phys. B+C 100, 1.

  5. A. Debski, R. Debski, and W. Gasior (2014). Arch. Metal. Mater. 59, 1337.

    Google Scholar 

  6. J. C. Slater (1964). J. Chem. Phys. 41, 3199.

    Article  CAS  Google Scholar 

  7. K. Janghorban, J. Kirkaldy, and G. Weatherly (2001). J. Phys. Condens. Matter 13(38), 8661.

    Article  CAS  Google Scholar 

  8. K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota (2010). J. Am. Chem. Soc. 132, 15896.

    Article  CAS  Google Scholar 

  9. S. Garcia, L. Zhang, G. W. Piburn, G. Henkelman, and S. M. Humphrey (2014). ACS Nano 8, 11512.

    Article  CAS  Google Scholar 

  10. D. H. Seo, H. Shin, K. Kang, H. Kim, and S. S. Han (2014). J. Phys. Chem. Lett. 5, 1819.

    Article  CAS  Google Scholar 

  11. A. Yang, O. Sakata, K. Kusada, T. Yayama, H. Yoshikawa, T. Ishimoto, M. Koyama, H. Kobayashi, and H. Kitagawa (2014). Appl. Phys. Lett. 105, 153109.

    Article  Google Scholar 

  12. M. Gracia-Pinilla, D. Ferrer, S. Mejia-Rosales, and E. Perez-Tijerina (2009). Nanoscale Res. Lett. 4, 896.

    Article  CAS  Google Scholar 

  13. M. N. Blom, D. Schooss, J. Stairs, and M.M. Kappes (2006). J. Chem. Phys. 124, 244308..

    Article  Google Scholar 

  14. D. Schooss, M. N. Blom, J. H. Parks, B. v. Issendorff, H. Haberland, and M. M. Kappes (2005). Nano Lett. 5, 1972 (2005).

  15. D. Reinhard, B. D. Hall, D. Ugarte, and R. Monot (1997). Phys. Rev. B 55, 7868.

    Article  CAS  Google Scholar 

  16. Y. C. Bae, H. Osanai, V. Kumar, and Y. Kawazoe (2004). Phys. Rev. B 70, 195413.

    Article  Google Scholar 

  17. Y. C. Bae, V. Kumar, H. Osanai, and Y. Kawazoe (2005). Phys. Rev. B 72, 125427.

    Article  Google Scholar 

  18. J. P. Chou, H. Y. T. Chen, C. R. Hsing, C. M. Chang, C. Cheng, C. M. Wei, Phys. Rev. B 80, 165412 (2009).

    Article  Google Scholar 

  19. M. J. Piotrowski, P. Piquini, and J. L. F. Da Silva (2010). Phys. Rev. B 81, 155446.

    Article  Google Scholar 

  20. J. P. Chou, C. R. Hsing, C. M. Wei, C. Cheng, C. M. Chang (2013). J. Phys. Condens. Matt. 25, 125305.

    Article  CAS  Google Scholar 

  21. J. L. F. Da Silva, M. J. Piotrowski, F. Aguilera-Granja (2012). Phys. Rev. B 86, 125430.

    Article  Google Scholar 

  22. M. R. Beltrán, F. Buendía Zamudio, V. Chauhan, P. Sen, H. Wang, Y. Ko, and K. Bowen (2013). Eur. Phys. J. D. 67, 63.

  23. D. J. Harding, P. Gruene, M. Haertelt, G. Meijer, A. Fielicke, S. M. Hamilton, W. S. Hopkins, S. R. Mackenzie, S. P. Neville, T. R. Walsh (2010). J. Chem. Phys. 133, 214304.

    Article  CAS  Google Scholar 

  24. D. J. Harding, T. R. Walsh, S. M. Hamilton, W. S. Hopkins, S. R. Mackenzie, P. Gruene, M. Haertelt, G. Meijer, and A. Fielicke (2010). J. Chem. Phys. 132, 011101.

    Article  CAS  Google Scholar 

  25. M. A. Mora, M. A. Mora–Ramrez, and M. F. Rubio-Arroyo (2010). Int. J. Quant. Chem. 110, 2541.

    CAS  Google Scholar 

  26. M. Mora and M. Mora–Ramirez (2014). J. Mol. Mod. 20, 2299.

    Article  CAS  Google Scholar 

  27. E. Janssens, T. V. Hoof, N. Veldeman, S. Neukermans, M. Hou, P. Lievens (2006) (2006). c Spectrometry 252(1), 38 (2006). doi:10.1016/j.ijms.2006.01.009. URL http://www.sciencedirect.com/science/article/pii/S1387380606000248

  28. E. Janssens, S. Neukermans, H. M. T. Nguyen, M. T. Nguyen, and P. Lievens (2005). Phys. Rev. Lett. 94, 113401. doi:10.1103/PhysRevLett.94.113401. URL http://link.aps.org/doi/10.1103/PhysRevLett.94.113401

  29. X. J. Hou, E. Janssens, P. Lievens, and M. T. Nguyen (2006). Chem. Phys. 330, 365.

    Article  CAS  Google Scholar 

  30. R. Dong, X. Chen, H. Zhao, X. Wang, H. Shu, Z. Ding, and L. Wei (2011). J. Phys. B 44, 035102.

    Article  Google Scholar 

  31. E. Janssens, S. Neukermans, X. Wang, N. Veldeman, R. E. Silverans, and P. Lievens (2005). Eur. Phys. J. D. 34(1–3), 23 (2005). doi:10.1140/epjd/e2005-00106-9. URl http://dx.doi.org/10.1140/epjd/e2005-00106-9

  32. V. Bonačić-Koutecký, J. Burda, R. Mitrić, M. Ge, G. Zampella, and P. Fantucci (2002). J. Chem. Phys. 117(7), 3120 (2002). doi:10.1063/1.1492800. URL http://scitation.aip.org/content/aip/journal/jcp/117/7/10.1063/1.1492800.

  33. G. Rossi, R. Ferrando, A. Rapallo, A. Fortunelli, B. C. Curley, L. D. Lloyd, and R. L. Johnston (2005). J. Chem. Phys. 122(19), 194309 (2005). doi:10.1063/1.1898224. URL http://scitation.aip.org/content/aip/journal/jcp/122/19/10.1063/1.1898224

  34. R. Ismail and R. L. Johnston (2010). Phys. Chem. Chem. Phys. 12, 8607. doi:10.1039/C004044D. URl http://dx.doi.org/10.1039/C004044D

  35. M. Molayem, V.G. Grigoryan, and M. Springborg (2011). J. Phys. Chem. C 115(45), 22148. doi:10.1021/jp2050417. URL http://dx.doi.org/10.1021/jp2050417.

  36. M. Molayem, V. G. Grigoryan, and M. Springborg (2011). J. Phys. Chem. C 115(15), 7179. doi:10.1021/jp1094678. URL http://dx.doi.org/10.1021/jp1094678

  37. R. P. Gupta (1981). Phys. Rev. B 23, 6265.

    Article  CAS  Google Scholar 

  38. F. Cleri and V. Rosato (1993). Phys. Rev. B 48, 22.

    Article  CAS  Google Scholar 

  39. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal (2002). J. Phys. Condens. Matter 14, 2745.

    Article  CAS  Google Scholar 

  40. D. M. Deaven and K. M. Ho (1995). Phys. Rev. Lett. 75, 288.

    Article  CAS  Google Scholar 

  41. R. L. Johnston (2003). Dalton Trans. 4193–4207.

  42. G. Seifert, D. Porezag, and T. Frauenheim (1996). Int. J. Quant. Chem. 58, 185.

    Article  CAS  Google Scholar 

  43. P. Koskinen and V. Mkinen (2009). Comput. Mater. Sci. 47, 237.

    Article  CAS  Google Scholar 

  44. S. R. Bahn and K. W. Jacobsen (2002). Comput. Sci. Eng. 4, 56.

    Article  CAS  Google Scholar 

  45. G. G. Rondina and J. L. F. D. Silva (2013). J. Chem. Inf. Model. 53, 2282.

    Article  CAS  Google Scholar 

  46. R. Gehrke and K. Reuter (2009). Phys. Rev. B 79, 085412.

    Article  Google Scholar 

  47. M.D. Wolf and U. Landman (1998). J. Phys. Chem. A 102, 6129.

    Article  CAS  Google Scholar 

  48. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner (1995). Phys. Rev. B 51, 12947. doi:10.1103/PhysRevB.51.12947. URL http://link.aps.org/doi/10.1103/PhysRevB.51.12947

  49. V. Rosato, M. Guillope, and B. Legrand (1989). Philos. Mag. A 59, 321.

    Article  Google Scholar 

  50. M. Jamal, S. J. Asadabadi, I. Ahmad, H. A. R. Aliabad (2014). Comput. Mater. Sci. 95, 592.

    Article  CAS  Google Scholar 

  51. M. Jamal, S. J. Asadabadi, I. Ahmad, H. A. R. Aliabad (2013). J. At. Mol. Sci. 4, 235.

    Google Scholar 

  52. F. Aguilera-Granja, J. L. Rodríguez-López, K. Michaelian, E. O. Berlanga-Ramírez, A. Vega (2002). Phys. Rev. B 66, 224410.

    Article  Google Scholar 

  53. C. Kittel, Introduction to Solid State Physics 8th Edition (Wiley, Hoboken, 2005).

    Google Scholar 

  54. R. Hoppe and Z. Kristallogr (1979). 150, 224410.

    Google Scholar 

  55. G.U. Gamboa, A.C. Reber, and S.N. Khanna (2013). New J. Chem. 37, 39283935.

    Article  Google Scholar 

  56. R. Fournier (2001). J. Chem. Phys. 115, 21652177.

    Article  Google Scholar 

  57. Y. Jin, Y. Tian, X. Kuang, C. Zhang, C. Lu, J. Wang, J. Lv, L. Ding, and M. Ju (2015). J. Phys. Chem. A 119, 6738.

    Article  CAS  Google Scholar 

  58. A. Christensen, A. V. Ruban, P. Stoltze, K. W. Jacobsen, H. L. Skriver, J. K. Nørskov, and F. Besenbacher (1997). Phys. Rev. B 56, 5822.

    Article  CAS  Google Scholar 

  59. E. Janssens, X. J. Hou, M. T. Nguyen, and P. Lievens (2006). J. Chem. Phys. 124(18), 184319 (2006). doi:10.1063/1.2191495.

  60. W. Li, and F. Chen (2013). J. Nanopart. Res. 15, 1809.

    Article  Google Scholar 

  61. M. Harb, F. Rabilloud, and D. Simon (2007). J. Phys. Chem. A 111(32), 7726. doi:10.1021/jp072207l. URL http://dx.doi.org/10.1021/jp072207l. PMID: 17637046

  62. M. Pereiro, D. Baldomir, and J. E. Arias, Phys. Rev. A 75, 063204. doi:10.1103/PhysRevA.75.063204. URL http://link.aps.org/doi/10.1103/PhysRevA.75.063204.

Download references

Acknowledgments

Stephan Kohaut would like to thank Prof. Dr. H. P. Beck for helpful discussions and N. Louis for computational support. Moreover, the authors would like to thank C3MSaar for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Springborg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohaut, S., Springborg, M. Structural, Energetic, and Magnetic Properties of Ag\(_{n-m}\)Rh\(_{m}\) and Ag\(_{m}\)Rh\(_{n-m}\) Clusters with \(n \le 20\) and \(m=0,1\) . J Clust Sci 27, 913–933 (2016). https://doi.org/10.1007/s10876-016-1003-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1003-1

Keywords

Navigation