Skip to main content
Log in

Synthesis, Characterization and Crystal Structures of Some Metal Carbonyl Linking Clusters of Osmium, Ruthenium and Cobalt Derived from Diethynylarenes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The use of various diethynylarene ligands in the synthesis of some metal carbonyl linking clusters is established. New dimeric complexes of osmium [{(μ-CO)Os3(CO)9}232-diyne)], ruthenium [{(μ-H)Ru3(CO)9}2322-diyne)] or [{(μ-CO)Ru3(CO)9}232-diyne)] and cobalt [{Co2(CO)6}22-diyne)] (diyne = HC≡CArC≡CH, Ar = 2,7-fluorene, 2,7-fluoren-9-one, bithiazole or bithiophene) have been prepared in good yields from the reaction of [Os3(CO)10(NCMe)2], [Ru3(CO)12] or [Ru3(CO)10(NCMe)2] and [Co2(CO)8] with half an equivalent of the appropriate diethynylarene ligand, respectively. All these cluster compounds have been characterized by IR and 1H NMR spectroscopies and mass spectrometry. The molecular structures of three of them have been determined by X-ray crystallography. For the group 8 osmium and ruthenium analogues, the hexanuclear carbonyl clusters consist of two trinuclear metal cores with the exhibition of the μ3-(η2-||) bonding mode for the acetylene groups when [M3(CO)10(NCMe)2] (M = Ru, Os) was used and the μ322 bonding mode when [Ru3(CO)12] served as the starting cluster. The tetracobalt species possesses two Co2C2 cores adopting the pseudo-tetrahedral geometry having the alkyne bond lying perpendicular to the Co–Co vector in each core. Density functional theory was also used to study the electronic structures of selected molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Ahrens, L. P. Clarke, N. Feeder, M. S. Khan, P. Li, J. N. Martin, and P. R. Raithby (2008). Inorg. Chim. Acta 361, 3117.

    Article  CAS  Google Scholar 

  2. C. J. Adams, L. P. Clarke, A. M. Martín-Castro, P. R. Raithby, and G. P. Shield (2000). J. Chem. Soc. Dalton Trans. 4015.

  3. L. P. Clarke, J. E. Davies, D. V. Krupenya, P. R. Raithby, G. P. Shields, G. L. Starova, and S. P. Tunik (2003). J. Organomet. Chem. 683, 313.

    Article  CAS  Google Scholar 

  4. W.-Y. Wong, H.-Y. Lam, and S.-M. Lee (2000). J. Organomet. Chem. 595, 70.

    Article  CAS  Google Scholar 

  5. L. P. Clarke, Ph.D. Thesis, University of Cambridge (1999).

  6. S. Aime, R. Bertoncello, V. Busetti, R. Gobetto, G. Granozzi, and D. Osella (1986). Inorg. Chem. 25, 4004.

    Article  CAS  Google Scholar 

  7. P. R. Raithby and A. L. Johnson, in: R. H. Crabtree and D. M. P. Mingos (eds.), Comprehensive Organometallic Chemistry III, in: M. Bruce (Ed.), vol. 6, Elsevier Ltd., Oxford, 2007, p. 757.

  8. F. F. de Biani, C. Femoni, M. C. Iapalucci, G. Longoni, P. Zanello, and A. Ceriotti (1999). Inorg. Chem. 38, 3721.

    Article  Google Scholar 

  9. W.-Y. Wong, W.-T. Wong, and K.-K. Cheung (1995). J. Chem. Soc. Dalton Trans. 1379.

  10. W.-Y. Wong, S. Chan, and W.-T. Wong (1995). J. Organomet. Chem. 493, 229.

    Article  CAS  Google Scholar 

  11. W.-Y. Wong and W.-T. Wong (1996). J. Chem. Soc. Dalton Trans. 1853.

  12. W.-Y. Wong and W.-T. Wong (1999). J. Organomet. Chem. 584, 48.

    Article  CAS  Google Scholar 

  13. W.-Y. Wong, S.-H. Cheung, S.-M. Lee, and S.-Y. Leung (2000). J. Organomet. Chem. 596, 36.

    Article  CAS  Google Scholar 

  14. G. Longoni, C. Femoni, M. C. Iapalucci, and P. Zanello in P. Braunstein, L. A. Oro, and P. R. Raithby (eds.), Metal Clusters in Chemistry, Part II (Wiley-VCH, Weinheim, 1999), p. 1137.

    Chapter  Google Scholar 

  15. U. H. F. Bunz (2000). Chem. Rev. 100, 1605.

    Article  CAS  Google Scholar 

  16. P. J. Stang and F. Diederich (eds.) Modern Acetylenic Chemistry (Wiley-VCH, Weinheim, 1995).

    Google Scholar 

  17. W.-Y. Wong and C.-L. Ho (2006). Coord. Chem. Rev. 250, 2627.

    Article  CAS  Google Scholar 

  18. W.-Y. Wong (2007). Dalton Trans. 4495.

  19. P. Nguyen, P. Gomez-Elipe, and I. Manners (1999). Chem. Rev. 99, 1515.

    Article  CAS  Google Scholar 

  20. N. J. Long and C. K. Williams (2003). Angew. Chem. Int. Ed. 42, 2586.

    Article  CAS  Google Scholar 

  21. C.-L. Ho and W.-Y. Wong (2011). Coord. Chem. Rev. 255, 2469.

    Article  CAS  Google Scholar 

  22. W.-Y. Wong and C.-L. Ho (2010). Acc. Chem. Res. 43, 1246.

    Article  CAS  Google Scholar 

  23. G.-J. Zhou and W.-Y. Wong (2011). Chem. Soc. Rev. 40, 2541.

    Article  CAS  Google Scholar 

  24. W.-Y. Wong and P. D. Harvey (2000). Macromol. Rapid Commun. 31, 671.

    Article  Google Scholar 

  25. P. R. Raithby and M. J. Rosales (1985). Adv. Inorg. Chem. Radiochem. 29, 169.

    Article  CAS  Google Scholar 

  26. W.-Y. Wong, K.-H. Choi, and Z. Lin (2002). Eur. J. Inorg. Chem. 2112.

  27. J. Lewis, P. R. Raithby, and W.-Y. Wong (1998). J. Organomet. Chem. 556, 219.

    Article  CAS  Google Scholar 

  28. N. Chawdhury, A. Köhler, R. H. Friend, W.-Y. Wong, J. Lewis, M. Younus, P. R. Raithby, T. C. Corcoran, M. R. A. Al-Mandhary, and M. S. Khan (1999). J. Chem. Phys. 110, 4963.

    Article  CAS  Google Scholar 

  29. W.-Y. Wong, S.-M. Chan, K.-H. Choi, K.-W. Cheah, and W.-K. Chan (2000). Macromol. Rapid Commun. 21, 453.

    Article  CAS  Google Scholar 

  30. J. N. Nicholls and M. D. Vargas (1990). Inorg. Synth. 28, 289.

    Google Scholar 

  31. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  32. B. Miehlich, A. Savin, H. Stoll, and H. Preuss (1989). Chem. Phys. Lett. 157, 200.

    Article  CAS  Google Scholar 

  33. C. Lee, W. Yang, and G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  34. P. J. Stephens, F. J. Devlin, and C. F. Chabalowski (1984). J. Phys. Chem. 98, 11623.

    Article  Google Scholar 

  35. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.

    Article  CAS  Google Scholar 

  36. W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.

    Article  CAS  Google Scholar 

  37. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.

    Article  CAS  Google Scholar 

  38. M. S. Gordon (1980). Chem. Phys. Lett. 76, 163.

    Article  CAS  Google Scholar 

  39. P. C. Hariharan and J. A. Pople (1973). Theor. Chim. Acta 28, 213.

    Article  CAS  Google Scholar 

  40. R. C. Binning Jr and L. A. Curtiss (1990). J. Comput. Chem. 11, 1206.

    Article  CAS  Google Scholar 

  41. A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, and G. Frenking (1993). Chem. Phys. Lett. 208, 237.

    Article  Google Scholar 

  42. A. E. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, and G. Frenking (1993). Chem. Phys. Lett. 208, 111.

    Article  CAS  Google Scholar 

  43. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople (2004). Gaussian 03, Revision D.01, Gaussian, Inc.: Pittsburgh, PA.

  44. SAINT, Reference Manual, Siemens Energy and Automation, Madison, WI, 1994–1996.

  45. G. M. Sheldrick SADABS (University of Göttingen, Empirical Absorption Correction Program, 1997).

    Google Scholar 

  46. G.M. Sheldrick, SHELXTL™, Reference Manual, version 5.1, Siemens, Madison, WI, 1997.

  47. A. J. Deeming, S. Hasso, and M. Underhill (1975). J. Chem. Soc. Dalton Trans. 1614.

  48. S. Ermer, R. Karpelus, S. Miura, and E. Rosenberg (1980). J. Organomet. Chem. 187, 81.

    Article  CAS  Google Scholar 

  49. M. I. Bruce, B. W. Skelton, A. H. White, and N. N. Zaitseva (1996). Inorg. Chim. Acta 250, 129.

    Article  CAS  Google Scholar 

  50. S. Ermer, R. Karpelus, S. Miura, and E. Rosenberg (1980). J. Organomet. Chem. 187, 81.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. Li thanks the 111 Project and Beijing Engineering Research Center of Food Environment and Public Health from Minzu University of China (No. B08044 and No.10301-01404026) for financial support. Financial support from the National Natural Science Foundation of China (project number 51373145), Hong Kong Research Grants Council of HKSAR (HKBU203312) and Hong Kong Baptist University is gratefully acknowledged. The work was also supported by Partner State Key Laboratory of Environmental (SKLP-14-15-P011) and Biological Analysis and Strategic Development Fund of HKBU. Y. H. Lo gratefully acknowledges the financial support from the National Science Council of Taiwan (NSC 102-2113-M-845-001) and the project of the specific research fields in the University of Taipei, Taiwan. Dedicated to the Special Issue on 50 Years of Metal Cluster Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Li, Yih Hsing Lo or Wai-Yeung Wong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ting, FL., Ho, CL. et al. Synthesis, Characterization and Crystal Structures of Some Metal Carbonyl Linking Clusters of Osmium, Ruthenium and Cobalt Derived from Diethynylarenes. J Clust Sci 26, 291–307 (2015). https://doi.org/10.1007/s10876-014-0785-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0785-2

Keywords

Navigation