Skip to main content

Advertisement

Log in

Response of a phytoplankton community to nutrient addition under different CO2 and pH conditions

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Effects of nutrient enrichment on 400-L coastal phytoplankton community cultures were examined under 3 pCO2 levels [ambient (400), 800 and 1200 μatm]. Three days after addition of the nutrients, rapid increases in phytoplankton pigments and cell numbers were noticed. Relative growth rates of diatoms and dinoflagellates were higher than prasinophytes and haptophytes during early stages of the culture experiment, and only limited effects of increased CO2 were observed on nutrient consumption, biomass and cell numbers. Ocean acidification showed significant effects on phytoplankton composition during the post-blooming period with negligible dissolved nutrients; up to 70 % of total cells were picoplankton in the 1200-μatm condition as compared to 20 % in the ambient condition. An increase in chlorophyll b and a flow cytometry analysis of the cultured strains strongly suggested Micromonas-like (Prasinophyceae) picoplankton dominated in the acidified conditions. It is likely that the effects of ocean acidification are significant in low-nutrient conditions such as during the post-blooming period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arndt S, Lacroix G, Gypens N, Regnier P, Lancelot C (2011) Nutrient dynamics and phytoplankton development along an estuary-coastal zone continuum: a model study. J Mar Syst 84:49–66

    Article  Google Scholar 

  • Baek SH, Simode S, Kikuchi T (2007) Reproductive ecology of the dominant Dinoflagellate, Ceratium fusus, in coastal area of Sagami Bay, Japan. J Oceanogr 63:35–45

    Article  Google Scholar 

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Bellerby RGJ, Schulz KG, Riebesell U (2008) Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences 5:1517–1527

    Article  Google Scholar 

  • Brussaard CPD, Noordeloos AAM, Witte H, Collenteur MCJ, Schulz K, Ludwig A, Riebesell U (2013) Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences 10:719–731

    Article  Google Scholar 

  • Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res Part I 40:2116–2129

    Article  Google Scholar 

  • Cullen JJ, Franks PJ, Karl DM, Longhurst A (2002) Physical influences on marine ecosystem dynamics. In: Robinson AR, McCarthy JJ, Rothschild BJ (eds) The sea volume, vol 12. Wiley, New York, pp 297–336

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Eberlein T, Van de Waal DB, Rost B (2014) Differential effect of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species. Physiol Plant 151:468–479

    Article  Google Scholar 

  • Endo H, Yoshimura T, Kataoka T, Suzuki K (2013) Effects of CO2 and iron availability on phytoplankton and eubacterial community compositions in the northwest subarctic Pacific. J Exp Mar Biol Ecol 439:160–175

    Article  Google Scholar 

  • Engel A, Zondervan I, Aerts K, Beaufort L, Benthien A, Chou L, Delille B, Gattuso J-P, Harlay J, Heemann C, Hoffmann L, Jacquet S, Nejstgaard J, Pizay M-D, Rochelle-Newall E, Schneider U, Terbrueggen A, Riebesell U (2005) Testing the direct effect of CO2 concentration on a bloom of coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol Oceanogr 50:493–507

    Article  Google Scholar 

  • Engel A, Schulz KG, Riebesell U, Bellerby R, Delille B, Schartau M (2008) Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences 5:509–521

    Article  Google Scholar 

  • Engel A, Borchard C, Piontek J, Schulz KG, Riebesell U, Bellerby R (2013) CO2 increases 14C primary production in an Arctic plankton community. Biogeoscience 10:1291–1308

    Article  Google Scholar 

  • Feng Y, Hare CE, Leblanc K, Rose JM, Zhang Y, DiTullio GR, Lee PA, Wilhelm SW, Rowe JM, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins DA (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Mar Ecol Prog Ser 388:13–25

    Article  Google Scholar 

  • Gao K, Helbling EW, Hàder D-P, Hutchins DA (2012a) Reponses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar Ecol Prog Ser 470:167–189

    Article  Google Scholar 

  • Gao K, Xu J, Gao G, Li Y, Hutchins DA, Huang B, Wang L, Zheng Y, Jin P, Cai X, Häder D-P, Li W, Xu K, Liu N, Riebesell U (2012b) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Clim Chang 2:519–523

    Google Scholar 

  • Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36

    Article  Google Scholar 

  • Hama T, Handa N, Takahashi M, Whitney Wong CS (1988) Change in distribution patterns of photosynthetically incorporated C during phytoplankton bloom in controlled experimental ecosystem. J Exp Mar Biol Ecol 120:39–56

    Article  Google Scholar 

  • Hama T, Hama J, Handa N (1993) 13C tracer methodology in microbial ecology with special reference to primary production processes in aquatic environments. Adv Microb Ecol 13:39–83

    Article  Google Scholar 

  • Hama T, Kawashima S, Shimotori K, Satoh Y, Omori Y, Wada S, Adachi T, Hasegawa S, Midorikawa T, Ishii M, Saito S, Sasano D, Endo H, Nakayama T, Inouye I (2012) Effect of ocean acidification on coastal phytoplankton composition and accompanying organic nitrogen production. J Oceanogr 68:183–194

    Article  Google Scholar 

  • Hansen HP, Koroleff F (2007) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, vol 3. Wiley, Toronto, pp 159–228

    Google Scholar 

  • Hare CE, Leblanc K, DiTullio GR, Kudela RM, Zhang Y, Lee PA, Riseman S, Hutchins DA (2007) Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Mar Ecol Prog Ser 352:9–16

    Article  Google Scholar 

  • Heukelem LV, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  Google Scholar 

  • Hilligsøe KM, Richardson K, Bendtsen J, Sørensen L-L, Nielsen TG, Lyngsgaard MM (2011) Linking phytoplankton community size composition with temperature, plankton food web structure and sea-air CO2 flux. Deep Sea Res Part I 58:826–838

    Article  Google Scholar 

  • Hopkinson BM, Xu Y, Shi D, McGinn PJ, Morel FMM (2010) The effect of CO2 on the photosynthetic physiology of phytoplankton in the Gulf of Alaska. Limnol Oceanogr 55:2011–2024

    Article  Google Scholar 

  • Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of CO2-concentrating mechanism of diatoms. Proc Nati Acad Sci USA 108:3830–3837

    Article  Google Scholar 

  • Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. J Phycol 45:1236–1251

    Article  Google Scholar 

  • Jeffrey SW, Montoura RFC, Wright SW (2005) Phytoplankton pigments in oceanography: guidelines to modern methods. 2nd edn. UNESCO Publishing, Paris, 668 pp

  • Johnson KM, King AE, Sieburth JMcN (1985) Coulometric TCO2 analyses for marine studies; an introduction. Mar Chem 16:61–82

    Article  Google Scholar 

  • Kim J-M, Lee K, Shin K, Kang J-H, Lee H-W, Kim M, Jang P-G, Jang M-C (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnol Oceanogr 51:1629–1636

    Article  Google Scholar 

  • Kim J-H, Kim KY, Kang EJ, Lee K, Kim J-M, Park K-T, Shin K, Hyun B, Jeong HJ (2013) Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences 10:7525–7535

    Article  Google Scholar 

  • Knoll AH, Fischer WW (2011) Skeletons and ocean chemistry: the long view. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 67–82

    Google Scholar 

  • Kremp A, Tamminen T, Spilling K (2008) Dinoflagellate bloom formation in natural assemblages with diatoms: nutrient competition and growth strategies in Baltic spring phytoplankton. Aquat Microb Ecol 50:181–196

    Article  Google Scholar 

  • Liu H, Probert I, Uitz J, Claustre H, Aris-Brosou S, Frada M, Not F, Vargas C (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Nati Acad Sci USA 106:12803–12808

    Article  Google Scholar 

  • Lueker TJ, Dickson AG, Keeling CD (2000) Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K 1 and K 2 : validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar Chem 70:105–119

    Article  Google Scholar 

  • Meakin NG, Wyman M (2011) Rapid shifts in picoeukaryote community structure in response to ocean acidification. ISME J 5:1397–1405

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL Jr, Chen Z (eds) Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Mercado JM, Gordillo FJL (2011) Inorganic carbon acquisition in algal communities: are the laboratory data relevant to the natural ecosystems? Photosynth Res 109:257–267

    Article  Google Scholar 

  • Midorikawa T, Ishii M, Saito S, Sasano S, Kosugi N, Motoi T, Kamiya H, Nakadate A, Nemoto K, Inoue H (2010) Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific. Tellus 62B:649–659

    Article  Google Scholar 

  • Newbold LK, Oliver AE, Boothe T, Tiwari B, DeSantis T, Maguire M, Andersen G, van der Gast CJ, Whiteley AS (2012) The response of marine picoplankton to ocean acidification. Environ Microbiol 14:2293–2307

    Article  Google Scholar 

  • Orr JC (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 41–66

    Google Scholar 

  • Park K-T, Lee K, Shin K, Yang EJ, Hyun B, Kim J-M, Noh JH, Kim M, Kong B, Choi DH, Choi S-J, Jang P-G, Jeong HJ (2014) Direct linkage between dimethyl sulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions. Environ Sci Technol 48:4750–4756

    Article  Google Scholar 

  • Paulino AI, Egge JK, Larsen A (2008) Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences 5:739–748

    Article  Google Scholar 

  • Piehler MF, Twomey LJ, Hall NS, Paerl HW (2004) Impacts of inorganic nutrient enrichment on phytoplankton community structure and function in Pamlico Sound, NC, USA. Estuar Coast Shelf Sci 61:197–209

    Article  Google Scholar 

  • Raven JA (1991) Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant Cell Environ 14:779–794

    Article  Google Scholar 

  • Redfield AC (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea, vol II. Wiley, New York, pp 26–77

    Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanism in eukaryotic marine phytoplankton. Ann Rev Mar Sci 3:291–315

    Article  Google Scholar 

  • Reul A, Muñoz M, Bautista B, Neale PJ, Sobrino C, Mercado JM, Segovia M, Salles S, Kulk G, León P, von de Poll WH, Pérez E, Buma A, Blanco JM (2014) Effect of CO2, nutrients and light on coastal plankton. III. Trophic cascade, size structure and composition. Aquat Biol 22:59–76

    Article  Google Scholar 

  • Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729

    Article  Google Scholar 

  • Riebesell U, Tortell PD (2011) Effects of ocean acidification on pelagic organisms and ecosystems. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 99–121

    Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  Google Scholar 

  • Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–549

    Article  Google Scholar 

  • Riebesell R, Gattuso J-P, Thingstad TF, Middelburg JJ (2013) Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study. Biogeosciences 10:5619–5626

    Article  Google Scholar 

  • Rost B, Zondervan I, Wolf-Gladrow D (2008) Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Mar Ecol Prog Ser 373:227–237

    Article  Google Scholar 

  • Saito S, Ishii M, Midorikawa T, Inoue HY (2008) Precise spectrophotometric measurement of seawater pHT with an automated apparatus using a flow cell in a closed circuit. Technol Rep Meteorol Res Inst 57:31

    Google Scholar 

  • Schlüter L (1998) The influence of nutrient addition on growth rates of phytoplankton groups, and microzooplankton grazing rates in a mesocosm experiment. J Exp Mar Biol Ecol 228:53–71

    Article  Google Scholar 

  • Shultz KG, Bellerby RGJ, Brussaard CPD, Büdenbender J, Czerny J, Engle A, Fischer M, Koch-Klavsen S, Krug SA, Lischka S, Ludwig A, Meyerhöfer M, Nondal G, Silyakova A, Stuhr A, Riebesell U (2013) Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences 10:161–180

    Article  Google Scholar 

  • Silyakova A, Bellerby RGJ, Schulz KG, Czerny J, Tanaka T, Nondal G, Riebesell U, Engel A, Lange TD, Ludvig A (2013) Pelagic community production and carbon-nutrient stoichiometry under variable ocean acidification in an Arctic fjord. Biogeoscience 10:4847–4859

    Article  Google Scholar 

  • Sommer U, Stibor H, Katechakis A, Sommer F, Hansen T (2002) Pelagic food web configurations at different levels of nutrient richness and implications for the ratio fish production: primary production. Hydrobiologia 484:11–20

    Article  Google Scholar 

  • Spatharis S, Tsirtsis G, Danielidis DB, Chi TD, Mouillot D (2007) Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area. Estuar Coast Shelf Sci 73:807–815

    Article  Google Scholar 

  • Tatters AO, Roleda MY, Schnetzer A, Fu F, Hurd GL, Boyd PW, Caaaron DA, Lie AA, Hoffmann LJ, Hutchins DA (2015) Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philos Trans R Soc Lond B Biol Sci 368:20120437

    Article  Google Scholar 

  • Weinbauer MG, Mari X, Gattuso J-P (2011) Effects of ocean acidification on the diversity and activity of heterotrophic marine microorganisms. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 83–98

    Google Scholar 

  • Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Foulon E, Grimwood J, Gundlach H, Henrissat B, Napoli C, McDonald SM, Parker MS, Rombauts S, Salamov A, Von Dassow P, Badger JH, Coutinho PM, Demir E, Dubchak I, Gentemann C, Eikrem W, Gready JE, John U, Lainier W, Lindquest EA, Lucas S, Mayer KF, Moreau H, Not F, Otillar R, Panaud O, Pangilinan J, Paulsen I, Piegu B, Poliakov A, Robbens S, Schmutz J, Toulza E, Wyss T, Zelensky A, Zhou K, Armbrust EV, Bhattacharya D, Goodenough UW, Van de Peer Y, Grigoriev IV (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–272

    Article  Google Scholar 

  • Wu Y, Gao K, Riebesell U (2010) CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7:2915–2923

    Article  Google Scholar 

  • Yoshimura T, Nishioka J, Suzuki K, Hattori H, Kiyosawa H, Watanabe Y (2010) Impacts of elevated CO2 on organic carbon dynamics in nutrient depleted Okhotsk Sea surface waters. J Exp Mar Biol Ecol 395:191–198

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank staff members of the Shimoda Marine Research Center, University of Tsukuba, for their valuable assistance during the culture experiment. This study was supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (24241010), and the Global Environmental Research Fund of the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Hama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hama, T., Inoue, T., Suzuki, R. et al. Response of a phytoplankton community to nutrient addition under different CO2 and pH conditions. J Oceanogr 72, 207–223 (2016). https://doi.org/10.1007/s10872-015-0322-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-015-0322-4

Keywords

Navigation