Skip to main content

Advertisement

Log in

Numerical modeling of cohesive sediment transport in a tidal bay with current velocity assimilation

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Tidal currents play an important role in sediment dynamics in coastal and estuarine regions. The goal of this study is to investigate the effects of current velocity assimilation (CVA) on sediment transport modeling in tide-dominated waters. A hydrodynamic and sediment transport model for Deep Bay, Hong Kong, was established based on a three-dimensional primitive equation Finite Volume Coastal Ocean Model. An additional numerical simulation was conducted with in situ current velocity measurements sequentially assimilated into the model using a three-dimensional optimal interpolation scheme. The performance of CVA shows improvements in the root-mean-square errors and average cosine correlations of simulated current velocity by at least 9.1 % and 10.3 %, respectively. Moreover, the root-mean-square error of the simulated sediment concentration from the model with CVA was decreased by at least 7 %. A reasonable enhancement in the vertical and spatial distributions of sediment concentrations was demonstrated from the simulation results from the model with CVA. It was found that the bottom shear stress changed significantly when the simulated velocities were corrected with CVA. The results suggest that CVA has the potential to improve sediment transport prediction because tidal currents dominate sediment dynamics in the studied areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barth A, Alvera-Azcárate A, Beckers J-M, Staneva J, Stanev EV, Schulz-Stellenfleth J (2010) Correcting surface winds by assimilating high-frequency radar surface currents in the German Bight. Ocean Dyn 61(5):599–610. doi:10.1007/s10236-010-0369-0

    Article  Google Scholar 

  • Cancino L, Neves R (1999) Hydrodynamic and sediment suspension modelling in estuarine systems Part I: Description of the numerical models. J Mar Syst 22:105–116. doi:10.1016/S0924-7963(99)00035-4

    Article  Google Scholar 

  • Chen C, Liu H, Beardsley RC (2003) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Ocean Technol 20(1):159–186. doi:10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2

    Article  Google Scholar 

  • Chen C, Beardsley RC, Cowles G (2006) An unstructured grid, finite-volume coastal ocean model (FVCOM) System. Oceanography 19(1):78–89

    Article  Google Scholar 

  • El Serafy GYH, Mynett AE (2008) Improving the operational forecasting system of the stratified flow in Osaka Bay using an ensemble Kalman filter-based steady state Kalman filter. Water Resour Res 44(6):W06416. doi:10.1029/2006wr005412

    Google Scholar 

  • Galperin B, Kantha L, Hassid S, Rosati A (1988) A quasi-equilibrium turbulent energy model for geophysical flows. J Atmos Sci 45(1):55–62

    Article  Google Scholar 

  • Grochowski NTL, Collins MB, Boxall SR, Salomon JC, Breton M, Lafite R (1993) Sediment transport pathways in the Eastern English Channel. Oceanol Acta 16(5):531–537

    Google Scholar 

  • Guillou N, Chapalain G (2010) Numerical simulation of tide-induced transport of heterogeneous sediments in the English Channel. Cont Shelf Res 30(7):806–819. doi:10.1016/j.csr.2010.01.018

    Article  Google Scholar 

  • Høyer JL, She J (2007) Optimal interpolation of sea surface temperature for the North Sea and Baltic Sea. J Mar Syst 65:176–189. doi:10.1016/j.jmarsys.2005.03.008

    Article  Google Scholar 

  • Jordi A, Wang D-P (2013) Estimation of transport at open boundaries with an ensemble Kalman filter in a coastal ocean model. Ocean Model 64:56–66. doi:10.1016/j.ocemod.2013.01.002

    Article  Google Scholar 

  • Krone RB (1962) Flume studies of the transport in estuarine shoaling processes. Hydraulic Engineering Laboratory, University of California, Berkeley

    Google Scholar 

  • Kurapov AL, Allen JS, Egbert GD, Miller RN, Kosro PM, Levine MD, Boyd T, Barth JA (2005) Assimilation of moored velocity data in a model of coastal wind-driven circulation off Oregon: multivariate capabilities. J Geophys Res  110(C10S08):1–20. doi:10.1029/2004JC002493

    Google Scholar 

  • Larsen J, Høyer JL, She J (2007) Validation of a hybrid optimal interpolation and Kalman filter scheme for sea surface temperature assimilation. J Mar Syst 65:122–133. doi:10.1016/j.jmarsys.2005.09.013

    Article  Google Scholar 

  • Lettmann K, Wolff J-O, Liebezeit G, Meier G (2010) Investigation of the spreading and dilution of domestic waste water inputs into a tidal bay using the finite-volume model FVCOM. EGU General Assembly held 2-7 May in Vienna, Austria:p.6139

  • Lumborg U, Windelin A (2003) Hydrography and cohesive sediment modelling: application to the Rømø Dyb tidal area. J Mar Syst 38:287–303

    Article  Google Scholar 

  • Margvelashvili N, Andrewartha J, Herzfeld M, Robson BJ, Brando VE (2013) Satellite data assimilation and estimation of a 3D coastal sediment transport model using error-subspace emulators. Environ Model Softw 40:191–201. doi:10.1016/j.envsoft.2012.09.009

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Article  Google Scholar 

  • Paduan JD (2004) HF radar data assimilation in the Monterey Bay area. J Geophys Res 109(C07S09):1–17. doi:10.1029/2003jc001949

    Google Scholar 

  • Partheniades E (1965) Erosion and deposition of cohesive soils. J Hydr Div ASCE 91(HY1):105–139

    Google Scholar 

  • Qian AG (2003) Three-Dimensional Modelling of Hydrodynamics and Tidal Flushing in Deep Bay. Master thesis, The University of Hong Kong, Hong Kong, China

  • Serafy GY EI, Eleveld MA, Blaas M, Kessel T, Aguilar SG, Woerd HJ (2011) Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data. Ocean Sci J 46(3):179–204. doi:10.1007/s12601-011-0015-x

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2

    Article  Google Scholar 

  • Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG (2008) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci 34(10):1284–1306. doi:10.1016/j.cageo.2008.02.012

    Article  Google Scholar 

  • Wong SH, Li YS (1990) Hydrographic surveys and sedimentation in Deep Bay. Hong Kong. Environ Geol Water Sci 15(2):111–118. doi:10.1007/bf01705098

    Article  Google Scholar 

  • Wu L, Chen C, Guo P, Shi M, Qi J, Ge J (2011) A FVCOM-based unstructured grid wave, current, sediment transport model, I. Model description and validation. J Ocean Univ China 10(1):1–8. doi:10.1007/s11802-011-1788-3

    Article  Google Scholar 

  • Xie J, Zhu J (2010) Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Model 33:283–298. doi:10.1016/j.ocemod.2010.03.002

    Article  Google Scholar 

  • Zhang Z, Beletsky D, Schwab DJ, Stein ML (2007) Assimilation of current measurements into a circulation model of Lake Michigan. Water Resour Res. doi:10.1029/2006WR005818

    Google Scholar 

  • Zhang P, Wai O, Chen X, Lu J, Tian L (2014) Improving sediment transport prediction by assimilating satellite images in a Tidal Bay model of Hong Kong. Water 6(3):642–660

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hong Kong Research Grants Council (Grant No. B-Q23G), the National Key Technology R&D Program of the Ministry of Science and Technology (Grant No.2012BAC06B01) and the National Natural Science Foundation of China (Grant Nos. 41331174, 41101415). We are thankful for the Drainage Services Department and the Hong Kong Observatory of the Hong Kong SAR for providing the measurement data. We thank Professor Changsheng Chen at SMAST/UMASSD for providing the source code of FVCOM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wai, O.W.H., Lu, J. et al. Numerical modeling of cohesive sediment transport in a tidal bay with current velocity assimilation. J Oceanogr 70, 505–519 (2014). https://doi.org/10.1007/s10872-014-0246-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-014-0246-4

Keywords

Navigation