Skip to main content

Advertisement

Log in

Correcting surface winds by assimilating high-frequency radar surface currents in the German Bight

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Surface winds are crucial for accurately modeling the surface circulation in the coastal ocean. In the present work, high-frequency radar surface currents are assimilated using an ensemble scheme which aims to obtain improved surface winds taking into account European Centre for Medium-Range Weather Forecasts winds as a first guess and surface current measurements. The objective of this study is to show that wind forcing can be improved using an approach similar to parameter estimation in ensemble data assimilation. Like variational assimilation schemes, the method provides an improved wind field based on surface current measurements. However, the technique does not require an adjoint, and it is thus easier to implement. In addition, it does not rely on a linearization of the model dynamics. The method is validated directly by comparing the analyzed wind speed to independent in situ measurements and indirectly by assessing the impact of the corrected winds on model sea surface temperature (SST) relative to satellite SST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksoy A, Zhang F, Nielsen-Gammon JW (2006) Ensemble-based simultaneous state and parameter estimation with MM5. Geophys Res Lett 33:L12801

    Article  Google Scholar 

  • Anderson JL (2001) An ensemble adjustment filter for data assimilation. Mon Weather Rev 129:2884–2903

    Article  Google Scholar 

  • Annan J, Lunt D, Hargreaves J, Valdes P (2005) Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes Geophys 12:363–371

    Article  Google Scholar 

  • Barrick D, Evans M, Weber B (1977) Ocean surface currents mapped by radar. Science 198:138–144

    Article  Google Scholar 

  • Barth A, Alvera-Azcárate A, Beckers JM, Rixen M, Vandenbulcke L (2007) Multigrid state vector for data assimilation in a two-way nested model of the Ligurian Sea. J Mar Syst 65(1–4):41–59. doi:10.1016/j.jmarsys.2005.07.006. http://hdl.handle.net/2268/4260

    Article  Google Scholar 

  • Barth A, Alvera-Azcárate A, Weisberg RH (2008) Assimilation of high-frequency radar currents in a nested model of the West Florida Shelf. J Geophys Res 113:C08033. doi:10.1029/2007JC004585. http://hdl.handle.net/2268/26171

    Article  Google Scholar 

  • Barth A, Alvera-Azcárate A, Gurgel KW, Staneva J, Port A, Beckers JM, Stanev EV (2010) Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of high-frequency radar surface currents—application to the German Bight. Ocean Sci 6(1):161–178. doi:10.5194/os-6-161-2010. http://www.ocean-sci.net/6/161/2010/

    Article  Google Scholar 

  • Béal D, Brasseur P, Brankart JM, Ourmières Y, Verron J (2010) Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis. Ocean Sci 6:247–262. doi:10.5194/os-6-247-2010

    Article  Google Scholar 

  • Brankart JM, Testut CE, Brasseur P, Verron J (2003) Implementation of a multivariate data assimilation scheme for isopycnic coordinate ocean models: application to a 1993–96 hindcast of the North Atlantic Ocean circulation. J Geophys Res 108(C3):3074. doi:10.1029/2001JC001198

    Article  Google Scholar 

  • Breivik O, Satra O (2001) Real time assimilation of HF radar currents into a coastal ocean model. J Mar Syst 3–4:161–182

    Article  Google Scholar 

  • Burchard H, Bolding K (2002) GETM—a general estuarine transport model. Scientific documentation. Tech. Rep. EUR 20253 EN, European Commission

  • Chen Y, Snyder C (2007) Assimilating vortex position with an ensemble Kalman filter. Mon Weather Rev 135:1828–1845

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367. doi:10.1007/s10236-003-0036-9

    Article  Google Scholar 

  • Evensen G (2007) Data assimilation: the ensemble Kalman filter. Springer, New York, p 279

    Google Scholar 

  • Gelb A (1974) Applied optimal estimation. MIT, Cambridge, p 374

    Google Scholar 

  • Greenwald TJ, Hertenstein R, Vukićević T (2002) An all-weather observational operator for radiance data assimilation with mesoscale forecast models. Mon Weather Rev 130:1882–1897

    Article  Google Scholar 

  • Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:2776–2790

    Article  Google Scholar 

  • He R, Liu Y, Weisberg RH (2004) Coastal ocean wind fields gauged against the performance of an ocean circulation model. Geophys Res Lett 31:L14303. doi:10.1029/2003GL019261

    Article  Google Scholar 

  • Hoteit I, Cornuelle BD, Kim SY, Forget G, Köhl A, Terrill EJ (2009) Assessing 4D-VAR for dynamical mapping of coastal high-frequency radar in San Diego. Dyn Atmos Oceans 48:175–197. doi:10.1016/j.dynatmoce.2008.11.005

    Article  Google Scholar 

  • Hunt BR, Kalnay E, Kostelich EJ, Ott E, Patil DJ, Sauer T, Szunyogh I, Yorke JA, Zimin AV (2004) Four-dimensional ensemble Kalman filtering. Tellus 56A:273–277

    Google Scholar 

  • Hunt BR, Kostelich EJ, Szunyogh I (2007) Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D 230:112–126

    Article  Google Scholar 

  • Kundu PK (1976) Ekman veering observed near the ocean bottom. J Phys Oceanogr 6:238–242

    Article  Google Scholar 

  • Kurapov AL, Egbert GD, Allen JS, Miller RN, Erofeeva SY, Kosro P (2003) The M2 internal tide off Oregon: inferences from data assimilation. J Phys Oceanogr 33:1733–1757

    Article  Google Scholar 

  • van Leeuwen PJ (2001) An ensemble smoother with error estimates. Mon Weather Rev 129:709–728

    Article  Google Scholar 

  • Lewis JK, Shulman I, Blumberg AF (1998) Assimilation of CODAR observations into ocean models. Cont Shelf Res 18:541–559

    Article  Google Scholar 

  • Ljung L (1979) Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans Autom Control 24:36–50

    Article  Google Scholar 

  • Losa SN, Kivman GA, Schroter J, Wenzel M (2003) Sequential weak constraint parameter estimation in an ecosystem model. J Mar Syst 43:31–49

    Article  Google Scholar 

  • Lucas MA, Ayoub N, Barnier B, Penduff T, de Mey P (2008) Stochastic study of the temperature response of the upper ocean to uncertainties in the atmospheric forcing in an Atlantic OGCM. Ocean Model 20:90–113. doi:10.1016/j.ocemod.2007.07.006

    Article  Google Scholar 

  • Malanotte-Rizzoli P, Young RE, Haidvogel DB (1989) Initialization and data assimilation experiments with a primitive equation model. Dyn Atmos Oceans 13:349–378

    Article  Google Scholar 

  • Menemenlis D, Fieguth P, Wunsch C, Willsky A (1997) Adaptation of a fast optimal interpolation algorithm to the mapping of oceanographic data. J Geophys Res 102(C5):10573–10584

    Article  Google Scholar 

  • Mourre B, Ballabrera-Poy J, Garcia-Ladona E, Font J (2008) Surface salinity response to changes in the model parameters and forcings in a climatological simulation of the eastern North-Atlantic Ocean. Ocean Model 23:21–32

    Article  Google Scholar 

  • Oke PR, Allen JS, Miller RN, Egbert GD, Kosro PM (2002) Assimilation of surface velocity data into a primitive equation coastal ocean model. J Geophys Res 107(C9):5-1–5-25

    Article  Google Scholar 

  • Paduan JD, Shulman I (2004) HF radar data assimilation in the Monterey Bay area. J Geophys Res 109:C07S09

    Article  Google Scholar 

  • Pham DT, Verron J, Roubaud MC (1998) A singular evolutive extended Kalman filter for data assimilation in oceanography. J Mar Syst 16(3–4):323–340

    Article  Google Scholar 

  • PRISMA (1994) Prozesse im Schadstoffkreislauf Meer-Atmosphäre: Ökosystem Deutsche Bucht. BMFT-Projekt 03F0558A1 (1.1.1990–31.10.1993). Abschlussbericht, ZMK-Universität Hamburg

  • Sakov P, Evensen G, Bertino L (2010) Asynchronous data assimilation with the EnKF. Tellus 62A:24–29

    Google Scholar 

  • Shulman I, Paduan JD (2009) Assimilation of HF radar-derived radials and total currents in the Monterey Bay area. Deep Sea Res II: Topical Studies in Oceanography 56(3–5):149–160. doi:10.1016/j.dsr2.2008.08.004

    Article  Google Scholar 

  • Skachko S, Brankart JM, Castruccio F, Brasseur P, Verron J (2009) Improved turbulent air-sea flux bulk parameterization for controlling the response of the ocean mixed layer: a sequential assimilation approach. J Atmos Ocean Technol 26:538–555

    Article  Google Scholar 

  • Skandrani C, Brankart JM, Ferry N, Verron J, Brasseur P, Barnier B (2009) Controlling atmospheric forcing parameters of global ocean models: sequential assimilation of sea surface Mercator-Ocean reanalysis data. Ocean Sci 5:1–15

    Article  Google Scholar 

  • Staneva J, Stanev EV, Wolff JO, Badewien TH, Reuter R, Flemming B, Bartholomä A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29:302–319

    Article  Google Scholar 

  • Talagrand O (1972) On the damping of high-frequency motions in four-dimensional assimilation of meteorological data. J Atmos Sci 29:1571–1547

    Article  Google Scholar 

  • Vandenbulcke L, Rixen M, Beckers JM, Alvera-Azcárate A, Barth A (2008) An analysis of the error space of a high-resolution implementation of the GHER hydrodynamic model in the Mediterranean Sea. Ocean Model 24(1–2):46–64. doi: 10.1016/j.ocemod.2008.05.007. http://hdl.handle.net/2268/4263

    Article  Google Scholar 

  • Wilkin JL, Arango HG, Haidvogel DB, Lichtenwalner CS, Glenn SM, Hedström KS (2005) A regional ocean modeling system for the Long-term Ecosystem Observatory. J Geophys Res 110:C06S91

    Article  Google Scholar 

Download references

Acknowledgements

Klaus-Werner Gurgel from the University of Hamburg is thanked for providing the HF radar observations. The National Fund for Scientific Research, Belgium is acknowledged for funding the post-doctoral positions of the two first authors. This work was supported by the ECOOP project (European Coastal-shelf sea Operational observing and forecasting system) of the European Union. AVHRR Oceans Pathfinder SST data were obtained through the online PO.DAAC Ocean ESIP Tool (POET) at the Physical Oceanography Distributed Active Archive Center (PO.DAAC), NASA Jet Propulsion Laboratory, Pasadena, CA (http://podaac.jpl.nasa.gov/poet). Wind observations were obtained through the Web-based Weather Request and Distribution System from the German Meteorological Service (Deutscher Wetterdienst). We thank also two anonymous referees for their valuable comments and their constructive suggestions. This is a MARE publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Barth.

Additional information

Responsible Editor: Pierre-Marie Poulain

This article is part of the Topical Collection on Multiparametric observation and analysis of the Sea

Appendix: Analysis update for non-linear observation operators

Appendix: Analysis update for non-linear observation operators

The background estimate x b and the observations y o (involving a possibly non-linear observation operator h(·)) are assumed to be an unbiased estimate of the true state x t.

$$ E\left[ {\bf x}^b \right] = {\bf x}^t $$
(14)
$$ E\left[ {\bf y}^o \right] = h({\bf x}^t) $$
(15)

The error of the background estimate x b and the observations y o are assumed to be independent. One seeks an analysis scheme of the following form,

$$ {\bf x}^a = {\bf x}^b + {\bf K} \left({\bf y}^o - h\left({\bf x}^b\right)\right) $$
(16)

where K is a matrix to be defined by requiring that the analysis has a minimal error. On average, the analysis should be unbiased.

$$ E\left[ {\bf x}^a \right] = {\bf x}^t + {\bf K} \left(h\left({\bf x}^t\right) - E\left[ h\left({\bf x}^b\right) \right]\right) $$
(17)

This is the case if:

$$ \label{eqn:testbias} E\left[ h\left({\bf x}^b\right) \right] = h({\bf x}^t) $$
(18)

The error of the analysis is given by:

$$ {\bf x}^a - {\bf x}^t = {\bf x}^b - {\bf x}^t + {\bf K} \left({\bf y}^o - h\left({\bf x}^t\right)\right) - {\bf K} \left(h({\bf x}^t) - h\left({\bf x}^b\right)\right) $$
(19)

Since the background estimate is independent from the observations, h(x b) is also independent from the observations (\(\mbox{cov}({\bf y}^o,h({\bf x}^b)) = 0\)). The error covariance of the analysis yields:

$$ \begin{array}{rll} {\bf P}^a &=& {\bf P}^b - {\bf K} \mbox{cov}\left(h\left({\bf x}^b\right),{\bf x}^b\right) - \mbox{cov}\left({\bf x}^b,h\left({\bf x}^b\right)\right) {\bf K}^T \\ && + {\bf K} \mbox{cov}\left(h\left({\bf x}^b\right),h\left({\bf x}^b\right)\right) {\bf E}^T + {\bf K} {\bf R} {\bf K}^T \end{array}$$
(20)

Covariances are approximated by the ensemble covariances:

$$ {\bf P}^a = {\bf P}^b - {\bf K} {\bf E} {\bf S}^T - {\bf S} {\bf E}^T {\bf K} + {\bf K} \left( {\bf E} {\bf E}^T + {\bf R} \right) {\bf K}^T $$
(21)

The optimal Kalman gain K is obtained by minimizing the total error \(\mbox{tr}({\bf W} {\bf P}^a)\) where W is an arbitrary weighting matrix.

$$ J({\bf K}) = \mbox{tr}({\bf W} {\bf P}^a) $$
(22)

The minimum is obtained by:

$$\begin{array}{rll} \delta J &=& J({\bf K}+ \delta {\bf K}) - J({\bf K}) \\ &=& - 2 \mbox{tr}\left({\bf W} \delta {\bf K} {\bf E} {\bf S}^T\right) + 2 \mbox{tr}\left({\bf W} \delta {\bf K} \left({\bf E} {\bf E}^T + {\bf R}\right) {\bf K}^T\right) = 0 \end{array}$$
(23)

δJ is zero for any δ K if,

$$ {\bf K} = {\bf S} {\bf E}^T \left({\bf E} {\bf E}^T + {\bf R}\right)^{-1} $$
(24)

In summary, the analysis update with a non-linear observation operator is not guaranteed to be unbiased. The condition of Eq. 18 has thus to be verified separately. The Kalman gain can then be derived without additional assumptions (compared to the case of a linear observation operator).

In the context of the extended Kalman filter, a non-linear observation operator h(·) is linearized around the model forecast. Such linearization is not necessary here because the covariance matrices in the extended Kalman filter H P b H T and P b H T are directly derived from the ensemble (\(\mbox{cov}(h({\bf x}^b),h({\bf x}^b))\) and \(\mbox{cov}({\bf x}^b,\) h(x b))).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, A., Alvera-Azcárate, A., Beckers, JM. et al. Correcting surface winds by assimilating high-frequency radar surface currents in the German Bight. Ocean Dynamics 61, 599–610 (2011). https://doi.org/10.1007/s10236-010-0369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0369-0

Keywords

Navigation