Skip to main content

Advertisement

Log in

Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We have previously reported that when mixed with copper, 8-hydroxyquinoline (8-OHQ) and its analog clioquinol (CQ) inhibited the proteasomal activity and proliferation in cultured human cancer cells. CQ treatment of high-copper-containing human tumor xenografts also caused cancer suppression, associated with proteasome inhibition in vivo. However, the nature of the copper dependence of these events has not been elucidated experimentally. In the current study, using chemical probe molecules that mimic the structures of 8-OHQ and CQ, but have no copper-binding capability, we dissected the complex cellular processes elicited by 8-OHQ–Cu and CQ–Cu mixtures and revealed that copper binding to 8-OHQ or CQ is required for transportation of the copper complex into human breast cancer cells and the consequent proteasome-inhibitory, growth-suppressive, and apoptosis-inducing activities. In contrast, the non-copper-binding analogs of 8-OHQ or CQ blocked the very first step—copper binding—in this chain of events mediated by 8-OHQ–Cu or CQ–Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Labbe S, Thiele DJ (1999) Trends Microbiol 7:500–505

    Article  CAS  PubMed  Google Scholar 

  2. Maverakis E, Fung MA, Lynch PJ, Draznin M, Michael DJ, Ruben B, Fazel N (2007) J Am Acad Dermatol 56:116–124

    Article  PubMed  Google Scholar 

  3. Geraki K, Farquharson MJ, Bradley DA (2002) Phys Med Biol 47:2327–2339

    Article  CAS  PubMed  Google Scholar 

  4. Nayak SB, Bhat VR, Upadhyay D, Udupa SL (2003) Indian J Physiol Pharmacol 47:108–110

    CAS  PubMed  Google Scholar 

  5. Diez M, Arroyo M, Cerdan FJ, Munoz M, Martin MA, Balibrea JL (1989) Oncology 46:230–234

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida D, Ikeda Y, Nakazawa S (1993) J Neurooncol 16:109–115

    Article  CAS  PubMed  Google Scholar 

  7. Eatock MM, Schatzlein A, Kaye SB (2000) Cancer Treat Rev 26:191–204

    Article  CAS  PubMed  Google Scholar 

  8. Fox SB, Gasparini G, Harris AL (2001) Lancet Oncol 2:278–289

    Article  CAS  PubMed  Google Scholar 

  9. Brewer GJ (2001) Exp Biol Med (Maywood) 226:665–673

    CAS  Google Scholar 

  10. Adsule S, Barve V, Chen D, Ahmed F, Dou QP, Padhye S, Sarkar FH (2006) J Med Chem 49:7242–7246

    Article  CAS  PubMed  Google Scholar 

  11. Brewer GJ, Dick RD, Grover DK, LeClaire V, Tseng M, Wicha M, Pienta K, Redman BG, Jahan T, Sondak VK, Strawderman M, LeCarpentier G, Merajver SD (2000) Clin Cancer Res 6:1–10

    CAS  PubMed  Google Scholar 

  12. Redman BG, Esper P, Pan Q, Dunn RL, Hussain HK, Chenevert T, Brewer GJ, Merajver SD (2003) Clin Cancer Res 9:1666–1672

    CAS  PubMed  Google Scholar 

  13. Landis-Piwowar KR, Milacic V, Chen D, Yang H, Zhao Y, Chan TH, Yan B, Dou QP (2006) Drug Resist Updates 9:263–273

    Article  CAS  Google Scholar 

  14. Orlowski RZ, Dees EC (2003) Breast Cancer Res 5:1–7

    Article  CAS  PubMed  Google Scholar 

  15. Ciechanover A (1998) EMBO J 17:7151–7160

    Article  CAS  PubMed  Google Scholar 

  16. Seemuller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Science 268:579–582

    Article  CAS  PubMed  Google Scholar 

  17. Kisselev AF, Callard A, Goldberg AL (2006) J Biol Chem 281:8582–8590

    Article  CAS  PubMed  Google Scholar 

  18. An B, Goldfarb RH, Siman R, Dou QP (1998) Cell Death Differ 5:1062–1075

    Article  CAS  PubMed  Google Scholar 

  19. Lopes UG, Erhardt P, Yao R, Cooper GM (1997) J Biol Chem 272:12893–12896

    Article  CAS  PubMed  Google Scholar 

  20. Nordenberg J, Novogrodsky A, Beery E, Patia M, Wasserman L, Warshawsky A (1990) Eur J Cancer 26:905–907

    Article  CAS  PubMed  Google Scholar 

  21. Shen AY, Wu SN, Chiu CT (1999) J Pharm Pharmacol 51:543–548

    Article  CAS  PubMed  Google Scholar 

  22. Moret V, Laras Y, Cresteil T, Aubert G, Ping DQ, Di C, Barthelemy-Requin M, Beclin C, Peyrot V, Allegro D, Rolland A, De Angelis F, Gatti E, Pierre P, Pasquini L, Petrucci E, Testa U, Kraus JL (2009) Eur J Med Chem 44:558–567

    Article  CAS  PubMed  Google Scholar 

  23. Deraeve C, Boldron C, Maraval A, Mazarguil H, Gornitzka H, Vendier L, Pitie M, Meunier B (2008) Chemistry 14:682–696

    Article  CAS  PubMed  Google Scholar 

  24. Martirosyan AR, Rahim-Bata R, Freeman AB, Clarke CD, Howard RL, Strobl JS (2004) Biochem Pharmacol 68:1729–1738

    Article  CAS  PubMed  Google Scholar 

  25. Dou QP, Li B (1999) Drug Resist Updates 2:215–223

    Article  CAS  Google Scholar 

  26. Adams J (2003) Drug Discov Today 8:307–315

    Article  CAS  PubMed  Google Scholar 

  27. Ding WQ, Liu B, Vaught JL, Yamauchi H, Lind SE (2005) Cancer Res 65:3389–3395

    Article  CAS  PubMed  Google Scholar 

  28. Daniel KG, Chen D, Orlu S, Cui QC, Miller FR, Dou QP (2005) Breast Cancer Res 7:R897–R908

    Article  CAS  PubMed  Google Scholar 

  29. Chen D, Peng F, Cui QC, Daniel KG, Orlu S, Liu J, Dou QP (2005) Front Biosci 10:2932–2939

    Article  CAS  PubMed  Google Scholar 

  30. Li L, Xu B (2008) Tetrahedron 64:10986–10995

    Article  CAS  Google Scholar 

  31. Bevan JA, Graddon DP, McConnell JF (1963) Nature 199:363

    Article  Google Scholar 

  32. Daniel KG, Gupta P, Harbach RH, Guida WC, Dou QP (2004) Biochem Pharmacol 67:1139–1151

    Article  CAS  PubMed  Google Scholar 

  33. Chen D, Cui QC, Yang H, Barrea RA, Sarkar FH, Sheng S, Yan B, Reddy GP, Dou QP (2007) Cancer Res 67:1636–1644

    Article  CAS  PubMed  Google Scholar 

  34. Treiber C, Simons A, Strauss M, Hafner M, Cappai R, Bayer TA, Multhaup G (2004) J Biol Chem 279:51958–51964

    Article  CAS  PubMed  Google Scholar 

  35. Mao X, Li X, Sprangers R, Wang X, Venugopal A, Wood T, Zhang Y, Kuntz DA, Coe E, Trudel S, Rose D, Batey RA, Kay LE, Schimmer AD (2009) Leukemia 23:585–590

    Article  CAS  PubMed  Google Scholar 

  36. Filiz G, Caragounis A, Bica L, Du T, Masters CL, Crouch PJ, White AR (2008) Int J Biochem Cell Biol 40:1030–1042

    Article  CAS  PubMed  Google Scholar 

  37. Vaira MD, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P (2004) Inorg Chem 43:3795–3797

    Article  PubMed  Google Scholar 

  38. Ferrada E, Arancibia V, Loeb B, Norambuena E, Olea-Azar C, Huidobro-Toro JP (2007) Neurotoxicology 28:445–449

    Article  CAS  PubMed  Google Scholar 

  39. Pink JJ, Wuerzberger-Davis S, Tagliarino C, Planchon SM, Yang X, Froelich CJ, Boothman DA (2000) Exp Cell Res 255:144–155

    Article  CAS  PubMed  Google Scholar 

  40. Cvek B, Milacic V, Taraba J, Dou QP (2008) J Med Chem 51:6256–6258

    Article  CAS  PubMed  Google Scholar 

  41. Harris ED (2000) Annu Rev Nutr 20:291–310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Shandong University, the American Lebanese Syrian Associated Charities (ALSAC), and St. Jude Children’s Research Hospital (B.Y.)., and research funds from the Karmanos Cancer Institute of Wayne State University (Q.P.D.), the Department of Defense Breast Cancer Research Program (W81XWH-04-1-0688, DAMD17-03-1-0175; Q.P.D.) and the National Cancer Institute (1R01CA120009, 1R21CA139386-01; Q.P.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q. Ping Dou or Bing Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Time-dependent morphology observations (PDF 6973 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, S., Yang, L., Cui, Q.C. et al. Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells. J Biol Inorg Chem 15, 259–269 (2010). https://doi.org/10.1007/s00775-009-0594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0594-5

Keywords

Navigation