Skip to main content
Log in

Study of rheological properties of açai berry pulp: an analysis of its time-dependent behavior and the effect of temperature

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The industry of açai-based products has been growing in the last few years. Knowledge about the physical properties of açai pulp, including its rheology, is essential to the optimization of industrial processes. This work presents the rheological behavior of açai berry pulp in relation to the effects of shear rate, temperature, and time of shearing. The entire study was carried out in the temperature range of 10–70 °C. Açai pulp showed a non-Newtonian, pseudoplastic, and time-dependent behavior. Four upward and backward shear rate cycles were evaluated, resulting in complex hysteresis loops, in which thixotropy and anti-thixotropy zones were observed. Downward flow curves could be satisfactorily represented by the Power-Law rheological model. The stress profiles as a function of shear rate obtained in the first upward curves suggest a breakdown of the initial fluid structure at low shear rates. Tests were also carried out at a constant shear rate of 20 s−1 and, in this case, the Weltman model of thixotropy satisfactorily fit the experimental data. The activation energy, which was calculated by the Arrhenius equation, was 29.0 kJ/mol. The achievements of this work may be useful to further studies about açai pulp rheology and may contribute to process design in the açai industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

d p :

Particle diameter

d 63.2 :

Rosin–Rammler–Bennet model parameter

m :

Rosin–Rammler–Bennet model parameter

D S :

Sauter mean diameter

Γ(p) :

Gamma function

σ :

Shear stress

σ e :

Shear stress at steady state

σ 0 :

Yield stress

γ :

Shear rate

k :

Consistency index

n :

Flow index

A 1 :

Weltman model linear coefficient of thixotropy

B 1 :

Weltman model angular coefficient of thixotropy

A 2 :

Hahn model linear coefficient of thixotropy

B 2 :

Hahn model angular coefficient of thixotropy

t :

Time of shearing

η :

Apparent viscosity

η eq :

Apparent viscosity at steady state

η° :

Pre-exponential constant of Arrhenius equation

E a :

Activation energy for the effect of temperature on açai pulp rheology

R :

Ideal gases constant

T :

Absolute temperature

RSD mean (%) :

Relative standard deviation mean

SD :

Standard deviation of an experimental point

M :

Mean value of an experimental point

N :

Number of experimental points

References

  1. Del Pozo-Insfran, D., Percival, S.S., Talcott, S.T.: Açai (Euterpe oleracea Mart.) polyphenolics in their glycoside and aglycone forms induce apoptosis of HL-60 leukemia cells. J. Agric. Food Chem. 54, 1222–1229 (2006). https://doi.org/10.1021/jf052132n

    Article  Google Scholar 

  2. Heinrich, M., Dhanji, T., Casselman, I.: Aai (Euterpe oleracea Mart.)—a phytochemical and pharmacological assessment of the species’ health claims. Phytochem. Lett. 4, 10–21 (2011). https://doi.org/10.1016/j.phytol.2010.11.005

    Article  Google Scholar 

  3. Monge-Fuentes, V., Muehlmann, L.A., Longo, J.P.F., Silva, J.R., Fascineli, M.L., de Souza, P., Faria, F., Degterev, I.A., Rodriguez, A., Carneiro, F.P., Lucci, C.M., Escobar, P., Amorim, R.F.B., Azevedo, R.B.: Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: a potential treatment for melanoma. J. Photochem. Photobiol. B Biol. 166, 301–310 (2017). https://doi.org/10.1016/j.jphotobiol.2016.12.002

    Article  Google Scholar 

  4. Yamaguchi, K.K.D.L., Pereira, L.F.R., Lamarão, C.V., Lima, E.S., Da Veiga-Junior, V.F.: Amazon acai: chemistry and biological activities: a review. Food Chem. 179, 137–151 (2015). https://doi.org/10.1016/j.foodchem.2015.01.055

    Article  Google Scholar 

  5. IBGE: Produção Agrícola Municipal - 2016. https://sidra.ibge.gov.br/tabela/6578#resultado (2017)

  6. Pessoa, J.D.C., Arduin, M., Martins, M.A., de Carvalho, J.E.U.: Characterization of Açaí (E. Oleracea) fruits and its processing residues. Braz. Arch. Biol. Technol. 53, 1451–1460 (2010). https://doi.org/10.1590/S1516-89132010000600022

    Article  Google Scholar 

  7. Tonon, R.V., Alexandre, D., Hubinger, M.D., Cunha, R.L.: Steady and dynamic shear rheological properties of açai pulp (Euterpe oleraceae Mart.). J. Food Eng. 92, 425–431 (2009). https://doi.org/10.1016/j.jfoodeng.2008.12.014

    Article  Google Scholar 

  8. Nindo, C.I., Tang, J., Powers, J.R., Takhar, P.S.: Rheological properties of blueberry puree for processing applications. LWT Food Sci. Technol. 40, 292–299 (2007). https://doi.org/10.1016/j.lwt.2005.10.003

    Article  Google Scholar 

  9. Fragoso, M.F., Prado, M.G., Barbosa, L., Rocha, N.S., Barbisan, L.F.: Inhibition of mouse urinary bladder carcinogenesis by açai fruit (Euterpe oleraceae Martius) intake. Plant Foods Hum. Nutr. 67, 235–241 (2012). https://doi.org/10.1007/s11130-012-0308-y

    Article  Google Scholar 

  10. Xie, C., Kang, J., Li, Z., Schauss, A.G., Badger, T.M., Nagarajan, S., Wu, T., Wu, X.: The açaí flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway. J. Nutr. Biochem. 23, 1184–1191 (2012). https://doi.org/10.1016/j.jnutbio.2011.06.013

    Article  Google Scholar 

  11. Fischer, P., Pollard, M., Erni, P., Marti, I., Padar, S.: Rheological approaches to food systems. Comptes Rendus Phys. 10, 740–750 (2009). https://doi.org/10.1016/j.crhy.2009.10.016

    Article  ADS  Google Scholar 

  12. Joshi, A.R., Datta, A.K.: Non-Newtonian flow modelling based design of plate heat exchangers. Agric. Eng. Int. CIGR J. 19, 195–204 (2017)

    Google Scholar 

  13. Wu, B.: CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters. Water Res. 45, 2082–2094 (2011). https://doi.org/10.1016/j.watres.2010.12.020

    Article  Google Scholar 

  14. Diamante, L., Umemoto, M.: Rheological properties of fruits and vegetables: a review. Int. J. Food Prop. 18, 1191–1210 (2015). https://doi.org/10.1080/10942912.2014.898653

    Article  Google Scholar 

  15. Tabilo-Munizaga, G., Barbosa-Cánovas, G.V.: Rheology for the food industry. J. Food Eng. 67, 147–156 (2005). https://doi.org/10.1016/j.jfoodeng.2004.05.062

    Article  Google Scholar 

  16. Augusto, P.E.D., Cristianini, M., Ibarz, A.: Effect of temperature on dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea L.) pulp. J. Food Eng. 108, 283–289 (2012). https://doi.org/10.1016/j.jfoodeng.2011.08.015

    Article  Google Scholar 

  17. Sato, A.C.K., Cunha, R.L.: Effect of particle size on rheological properties of Jaboticaba pulp. J. Food Eng. 91, 566–570 (2009). https://doi.org/10.1016/j.jfoodeng.2008.10.005

    Article  Google Scholar 

  18. Antonio, G.C., Faria, F.R., Takeiti, C.Y., Park, K.J.: Rheological behavior of blueberry. Ciênc. Tecnol. Aliment. 29, 732–737 (2009). https://doi.org/10.1590/S0101-20612009000400006

    Article  Google Scholar 

  19. Haminiuk, I., Sierakkowski, M., Izidoro, D., Masson, M.: Rheological characterization of blackberry pulp caracterização reológica da polpa de. Brazilian J. Food Technol. 9, 291–296 (2006)

    Google Scholar 

  20. Bhattacharya, S.: Yield stress and time-dependent rheological properties of mango pulp. J. Food Sci. 64, 1029–1033 (1999). https://doi.org/10.1111/j.1365-2621.1999.tb12275.x

    Article  Google Scholar 

  21. Sikora, M., Dobosz, A., Krystyjan, M., Adamczyk, G., Tomasik, P., Berski, W., Kutyla-Kupidura, E.M.: Thixotropic properties of the normal potato starch - locust bean gum blends. LWT Food Sci. Technol. 75, 590–598 (2017). https://doi.org/10.1016/j.lwt.2016.10.011

    Article  Google Scholar 

  22. MAPA: Instrução Normativa no. 1, de 7 de Janeiro de 2000 (2000)

  23. AOAC: Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists, Gaithersburg (2012)

    Google Scholar 

  24. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959). https://doi.org/10.1139/o59-099

    Article  Google Scholar 

  25. Augusto, P.E.D., Ibarz, A., Cristianini, M.: Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: time-dependent and steady-state shear. J. Food Eng. 111, 570–579 (2012). https://doi.org/10.1016/j.jfoodeng.2012.03.015

    Article  Google Scholar 

  26. Lavelli, V., Sri Harsha, P.S.C., Mariotti, M., Marinoni, L., Cabassi, G.: Tuning physical properties of tomato puree by fortification with grape skin antioxidant dietary fiber. Food Bioprocess Technol. 8, 1668–1679 (2015). https://doi.org/10.1007/s11947-015-1510-3

    Article  Google Scholar 

  27. Zhou, L., Guan, Y., Bi, J., Liu, X., Yi, J., Chen, Q., Wu, X., Zhou, M.: Change of the rheological properties of mango juice by high pressure homogenization. LWT Food Sci. Technol. 82, 121–130 (2017). https://doi.org/10.1016/j.lwt.2017.04.038

    Article  Google Scholar 

  28. Mewis, J., Wagner, N.J.: Thixotropy. Adv. Colloid Interf. Sci. 147–148, 214–227 (2009). https://doi.org/10.1016/j.cis.2008.09.005

    Article  Google Scholar 

  29. Sharma, M., Mondal, D., Mukesh, C., Prasad, K.: Preparation of tamarind gum based soft ion gels having thixotropic properties. Carbohydr. Polym. 102, 467–471 (2014). https://doi.org/10.1016/j.carbpol.2013.11.063

    Article  Google Scholar 

  30. Carvalho, A.V., da Silveira, T.F.F., Mattietto, R.d.A., Oliveira, M.d.S.P., Godoy, H.T.: Chemical composition and antioxidant capacity of açaí (Euterpe oleracea) genotypes and commercial pulps. J. Sci. Food Agric. 97, 1467–1474 (2017). https://doi.org/10.1002/jsfa.7886

    Article  Google Scholar 

  31. Betoret, E., Betoret, N., Carbonell, J.V., Fito, P.: Effects of pressure homogenization on particle size and the functional properties of citrus juices. J. Food Eng. 92, 18–23 (2009). https://doi.org/10.1016/j.jfoodeng.2008.10.028

    Article  Google Scholar 

  32. Leverrier, C., Almeida, G., Espinosa-Muñoz, L., Cuvelier, G.: Influence of particle size and concentration on rheological behaviour of reconstituted apple purees. Food Biophys. 11, 235–247 (2016). https://doi.org/10.1007/s11483-016-9434-7

    Article  Google Scholar 

  33. Moelants, K.R.N., Cardinaels, R., Moldenaers, P., Hendrickx, M.E.: Rheology of concentrated tomato-derived suspensions: effects of particle characteristics. Food. Bioprocess Technol. 7, 248–264 (2014). https://doi.org/10.1007/s11947-013-1070-3

    Article  Google Scholar 

  34. Ferreira, G.M., Guimarães, M.J.O.C., Maia, M.C.A.: Efeito da temperature e da taxa de cisalhamento nas propriedades de escoamento da polpa de cupuaçu (Theobroma grandiflorum) integral. Rev. Bras. Frutic. 30, 385-389 (2008)

    Article  Google Scholar 

  35. Sánchez, C., Blanco, D., Oria, R., Sánchez-Gimeno, A.C.: White guava fruit and purees: textural and rheological properties and effect of the temperature. J. Texture Stud. 40, 334–345 (2009)

    Article  Google Scholar 

  36. Pereira, E.A., Brandão, E.M., Borges, S.V., Maia, M.C.A.: Influence of concentration on the steady and oscillatory shear behavior of umbu pulp. Rev. Bras. Eng. Agrícola e Ambient. 12, 87–90 (2008)

    Article  Google Scholar 

  37. Krokida, M.K., Maroulis, Z.B., Saravacos, G.D.: Rheological properties of fluid fruit and vegetable puree products: compilation of literature data. Int. J. Food Prop. 4, 179–200 (2001). https://doi.org/10.1081/JFP-100105186

    Article  Google Scholar 

  38. Wang, B., Li, D., Wang, L.J., Özkan, N.: Anti-thixotropic properties of waxy maize starch dispersions with different pasting conditions. Carbohydr. Polym. 79, 1130–1139 (2010). https://doi.org/10.1016/j.carbpol.2009.10.053

    Article  Google Scholar 

  39. Dewar, R.J., Joyce, M.J.: The thixotropic and rheopectic behaviour of maize starch and maltodextrin thickeners used in dysphagia therapy. Carbohydr. Polym. 65, 296–305 (2006). https://doi.org/10.1016/j.carbpol.2006.01.018

    Article  Google Scholar 

  40. Tattiyakul, J., Rao, M.A.: Rheological behavior of cross-linked waxy maize starch dispersions during and after heating. Carbohydr. Polym. 43, 215–222 (2000). https://doi.org/10.1016/S0144-8617(00)00160-0

    Article  Google Scholar 

  41. Zhang, Y., Gu, Z., Hong, Y., Li, Z., Cheng, L.: Pasting and rheologic properties of potato starch and maize starch mixtures. Starch/Staerke 63, 11–16 (2011). https://doi.org/10.1002/star.200900255

    Article  Google Scholar 

  42. Basu, S., Shivhare, U.S., Singh, T.V.: Effect of substitution of stevioside and sucralose on rheological, spectral, color and microstructural characteristics of mango jam. J. Food Eng. 114, 465–476 (2013). https://doi.org/10.1016/j.jfoodeng.2012.08.035

    Article  Google Scholar 

  43. Dolores Alvarez, M., Canet, W.: Time-independent and time-dependent rheological characterization of vegetable-based infant purees. J. Food Eng. 114, 449–464 (2013). https://doi.org/10.1016/j.jfoodeng.2012.08.034

    Article  Google Scholar 

  44. Ramaswamy, H.S., Basak, S.: Time dependent stress decay rheology of stirred yogurt. Int. Dairy J. 1, 17–31 (1991). https://doi.org/10.1016/0958-6946(92)90041-J

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the organizations CNPq, CAPES, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique C. B. Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, H.C.B., Arouca, F.O., Silva, D.O. et al. Study of rheological properties of açai berry pulp: an analysis of its time-dependent behavior and the effect of temperature. J Biol Phys 44, 557–577 (2018). https://doi.org/10.1007/s10867-018-9506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9506-7

Keywords

Navigation