Skip to main content
Log in

Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing 13C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the 13C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Martins, Z., Sephton, M.A.: Extraterrestrial amino acids. In: Hughes, A.B. (ed.) Amino Acids, Peptides in Organic Chemistry, pp. 3–42. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

  2. Elsila, J.E., Glavin, D.P., Dworkin, J.P.: Cometary glycine detected in samples returned by Stardust. Meteor. Planet. Sci. 44, 1323–1330 (2009)

  3. Miller, S.L.: A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953)

    Article  ADS  Google Scholar 

  4. Kasting, J.F., Howard, M.T.: Atmospheric composition and climate on the early Earth. Phil. Trans. R. Soc. 361, 1733–1742 (2006)

    Article  Google Scholar 

  5. Cleaves, H.J., Chalmers, J.H., Lazcano, A., Miller, S.L., Bada, J.L.: A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Org. Life Evol. Biosph. 38, 105–115 (2008)

  6. Nakazawa, H., Sekine, T., Kakegawa, T., Nakazawa, S.: High yield shock synthesis of ammonia from iron, water and nitrogen available on the early Earth. Earth Planet. Sci. Lett. 235, 356–360 (2005)

    Article  ADS  Google Scholar 

  7. Culler, T.S., Becker, T.A., Muller, R.A., Renne, P.R.: Lunar impact history from 40Ar/39Ar dating of glass spheres. Science 287, 1785–1788 (2000)

    Article  ADS  Google Scholar 

  8. Valley, J.W., Peck, W.H., King, E.M., Wilde, S.A.: A cool early Earth. Geology 30, 351–354 (2002)

    Article  ADS  Google Scholar 

  9. Nakazawa, H.: The Origin of Life: a Scenario Written by the Earth. Shin-Nihon Publ. Co. Tokyo (2006)

  10. Hennet, R.J.C., Holm, N.G., Engel, M.H.: Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon. Naturwissenschaften 79, 361–365 (1992)

    Article  ADS  Google Scholar 

  11. Marshall, W.L.: Hydrothermal synthesis of amino acids. Geochim. Cosmochim. Acta 58, 2099–2106 (1994)

    Article  ADS  Google Scholar 

  12. Huber, C., Wächtershäuser, G.: α-hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science 314, 630–632 (2006)

    Article  ADS  Google Scholar 

  13. Aubrey, A.D., Cleaves, H.J., Bada, J.L.: The role of submarine hydrothermal systems in the synthesis of amino acids. Orig. Life Evol. Biosph. 39, 91–108 (2009)

    Article  ADS  Google Scholar 

  14. Furukawa, Y., Sekine, T., Oba, M., Kakegawa, T., Nakazawa, H.: Biomolecule formation by oceanic impacts on early Earth. Nat. Geosci. 2, 62–66 (2009)

    Article  ADS  Google Scholar 

  15. Furukawa, Y., Samejima, T., Nakazawa, H., Kakegawa, T.: Experimental investigation of reduced volatile formation by high-temperature interactions among meteorite constituent materials, water, and nitrogen. Icarus 231, 77–82 (2014)

    Article  ADS  Google Scholar 

  16. Goldman, N., Reed, E.J., Fried, L.E., Kuo, I.F.W., Maiti, A.: Synthesis of glycine-containing complexes in impacts of comets on early Earth. Nat. Chem. 2, 949–954 (2010)

  17. Otake, T., Taniguchi, T., Furukawa, Y., Nakazawa, H., Kakegawa, T.: Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic Chemistry. Astrobiology 11, 799–813 (2011)

    Article  ADS  Google Scholar 

  18. Ohara, S., Kakegawa, T., Nakazawa, H.: Pressure effects on the abiotic polymerization of glycine. Orig. Life Evol. Biosph. 37, 215–223 (2007)

    Article  ADS  Google Scholar 

  19. Furukawa, Y., Otake, T., Ishiguro, T., Nakazawa, H., Kakegawa, T.: Abiotic formation of valine peptides under conditions of high temperature and high pressure. Orig. Life Evol. Biosph. 42, 519–531 (2012)

    Article  ADS  Google Scholar 

  20. Paterson, E., Horz, F., Chang, S.: Modification of amino acids at shock pressures of 3.5 to 32 GPa. Geochim. Cosmochim. Acta 61, 3937–3950 (1997)

    Article  ADS  Google Scholar 

  21. Bertrand, M., van der Gaast, S., Vilas, F., Hörz, F., Haynes, G., Chabin, A., Brack, A., Westall, F.: The fate of amino acids during simulated meteoritic impact. Astrobiology 9, 943–951 (2009)

    Article  ADS  Google Scholar 

  22. Blank, J.G., Miller, G.H., Ahrens, M.J., Winans, R.E.: Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Org. Life Evol. Biosph. 31, 15–51 (2001)

  23. Chen, J., Cheng, H., Zhu, X., Jin, L., Zheng, H.: In situ transformation of an aqueous amino acid at high pressures and temperatures. Geochem. J. 41, 283–290 (2007)

    Article  Google Scholar 

  24. Basiuk, V.A., Douda, J.: Pyrolysis of simple amino acids and nucleobases: survivability limits and implications for extraterrestrial delivery. Planet Space Sci 47, 577–584 (1999)

    Article  ADS  Google Scholar 

  25. Chareonpanich, M., Takeda, T., Yamashita, H., Tomita, A.: Catalytic hydrocracking reaction of nascent coal volatile matter under high pressure. Fuel 73, 666–670 (1994)

    Article  Google Scholar 

  26. Brack, A.: Clay minerals and origin of life. In: Bergaya, G., Theng, B.K.G., Lagaly, G. (eds.) Handbook of Clay Science, pp. 379–391. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  27. Cleaves, H.J., Pregont, E.C., Jonsson, C.M., Jonsson, C.L., Sverjensky, D.A., Hazen, R.A.: The adsorption of short single-stranded DNA oligomers to mineral surfaces. Chemosphere 83, 1560–1567 (2011)

    Article  Google Scholar 

  28. Bada, J.L.: Amino acid cosmogeochemistry. Phil. Trans. R. Soc. Lond. 333, 349–358 (1991)

  29. Dymek, R.F., Klein, C.: Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland. Precambrian Res. 39, 247–302 (1988)

    Article  Google Scholar 

  30. Christensen, P.R., Bandfield, J.L., Clark, R.N., Edgett, K.S., Hamilton, V.E., Hoefen, T., Kieffer, H.H., Kuzmin, R.O., Lane, M.D., Malin, M.C., Morris, R.V., Pearl, J.C., Pearson, R., Roush, T.L., Ruff, S.W., Smith, M.D.: Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. J. Geophys. Res. 105, 9623–9642 (2000)

    Article  ADS  Google Scholar 

  31. Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T., Rosing, M.T.: Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat. Geosci. 7, 25–28 (2014)

    Article  ADS  Google Scholar 

  32. McKay, D.S., Gibson Jr., E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., Zare, R.N.: Search for past life on mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924–930 (1996)

    Article  ADS  Google Scholar 

  33. Sekine, T.: Shock wave chemical synthesis. Eur. J. Solid State Inorg. Chem. 34, 823–833 (1997)

  34. Marsh, S.P.: LASL Shock Hugoniot Data. Univ. California Press, Los Angeles (1980)

  35. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  36. Furukawa, Y., Sekine, T., Kakegawa, T., Nakazawa, H.: Impact-induced phyllosilicate formation from olivine and water. Geochim. Cosmochim. Acta 75, 6461–6472 (2011)

    Article  ADS  Google Scholar 

  37. Robie, R.A., Hemmingway, B.S., Fisher, J.R.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. United States Government Printing Office, Washington (1995)

    Google Scholar 

  38. Koel, B.E., Crowell, J.E., Bent, B.E., Mate, C.M., Somorjai, G.A.: Thermal decomposition of benzene on the Rh (111) crystal surface. J. Phys. Chem. 90, 2949–2956 (1986)

    Article  Google Scholar 

  39. Gunanathan, C., Milstein, D.: Selective synthesis of primary amines directly from alcohols and ammonia. Angew. Chem. Int. Ed. 47, 8661–8664 (2008)

    Article  Google Scholar 

  40. McEnally, C.S., Ciuparu, D.M., Pfefferle, L.D.: Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes. Combust. Flame 134, 339–353 (2003)

  41. Dixon, C.N., Abraham, M.A.: Conversion of methane to methanol by catalytic supercritical water oxidation. J. Supercrit. Fluids 5, 269–273 (1992)

    Article  Google Scholar 

  42. Sato, N., Quitain, A.T., Kang, K., Daimon, H., Fujie, K.: Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Ind. Eng. Chem. Res. 43, 3217–3222 (2004)

    Article  Google Scholar 

  43. Klingler, D., Berg, J., Vogel, H.: Hydrothermal reactions of alanine and glycine in sub- and supercritical water. J. Supercrit. Fluids 43, 112–119 (2007)

  44. Fox, S.W., Windsor, C.R.: Synthesis of amino acids by the heating of formaldehyde and ammonia. Science 170, 984–986 (1970)

    Article  ADS  Google Scholar 

  45. Reid, C.: In: Oparin, A.I., Pasynski, A.G., Braunstein, A.E., Pavlovskaya, T.E. (eds.) The origin of Life on the Earth, pp. 619–625. Pergamon, London (1959)

  46. Alargov, D.K., Deguchi, S., Tsujii, K., Horikoshi, K.: Reaction behaviors of glycine under super- and subcritical water conditions. Orig. Life Evol. Biosph. 32, 1–12 (2002)

    Article  ADS  Google Scholar 

  47. McCollom, T.M.: The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions. Geochim. Cosmochim. Acta 104, 330–357 (2013)

    Article  ADS  Google Scholar 

  48. Sugahara, H., Mimura, K.: Glycine oligomerization up to triglycine by shock experiments simulating comet impacts. Geochem. J. 48, 51–62 (2014)

    Article  Google Scholar 

  49. Islam, M.N., Kaneko, T., Kobayashi, K.: Reaction of amino acids in a supercritical water-flow reactor simulating submarine hydrothermal systems. Bull. Chem. Soc. Jpn. 76, 1171–1178 (2003)

    Article  Google Scholar 

  50. Andersson, E., Holm, N.G.: The stability of some selected amino acids under attempted redox constrained hydrothermal conditions. Orig. Life Evol. Biosph. 30, 9–23 (2000)

    Article  ADS  Google Scholar 

  51. Bada, J.L., Miller, S.L., Zhao, M.: The stability of amino acids at submarine hydrothermal vent temperature. Orig. Life Evol. Biosph. 25, 111–118 (1995)

    Article  ADS  Google Scholar 

  52. Harberstroh, P.R., Karl, D.M.: Dissolved free amino acids in hydrothermal vent habitats of the Guayman Basin. Geochim. Cosmochim. Acta 53, 2937–2945 (1989)

    Article  ADS  Google Scholar 

  53. Blank, J.G., Miller, G.H.: The fate of organic compounds in cometary impacts. Proc. 21st Intern. Symp. Shock Waves, edited by A. Houwing et al., p. 8180 (1998)

  54. Zhang, F., Sekine, T.: Impact-shock behavior of Mg- and Ca-sulfates and their hydrates. Geochim. Cosmochim. Acta 71, 4125–4133 (2007)

    Article  ADS  Google Scholar 

  55. Gilvarry, J.J., Hochstim, A.R.: Possible role of meteorites in the origin of life. Nature 197, 624–625 (1963)

    Article  ADS  Google Scholar 

  56. Bar-Nun, A., Bar-Nun, N., Bauer, S.H., Sagan, C.: Shock synthesis of amino acids in simulated primitive environments. Science 168, 470–473 (1970)

    Article  ADS  Google Scholar 

  57. Bar-Nun, A., Shaviv, A.: Dynamic of the chemical evolution of Earth’s primitive atmosphere. Icarus 24, 197–210 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The TEM and SEM observations were performed at N-BIRD, Hiroshima University. We thank K. Shibata and M. Maeda for their help. This research was supported in part by grants from JSPS (24244084 to TK, 23740402 to YF, and 24654176 to TS). We are thankful to Kausik Das for improvement of our early manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimori Sekine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umeda, Y., Fukunaga, N., Sekine, T. et al. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts. J Biol Phys 42, 177–198 (2016). https://doi.org/10.1007/s10867-015-9400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-015-9400-5

Keywords

Navigation