Skip to main content
Log in

Pre-clinical evidence that salinomycin is active against retinoblastoma via inducing mitochondrial dysfunction, oxidative damage and AMPK activation

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The poor outcomes in retinoblastoma necessitate new treatments. Salinomycin is an attractive candidate, and has demonstrated selective anti-cancer properties in different cancer types. This work addressed the efficacy of salinomycin in retinoblastoma models and probe the associated mechanisms. Cellular functional assays were conducted to determine the effects salinomycin in vitro. Xenograft retinoblastoma mouse model was established to investigate the efficacy of salinomycin in vivo. Biochemical assays were conducted to analyze the mechanism of salinomycin’s action focusing on mitochondrial functions, energy reduction-related signaling pathways. Salinomycin has positive effects towards retinoblastoma cells regardless of heterogeneity through suppressing growth and inducing apoptosis. Salinomycin also specifically inhibits cells displaying stemness and highly invasive phenotypes. Using retinoblastoma xenograft mouse model, we show that salinomycin at non-toxic dose effectively inhibits growth and induces apoptosis. Mechanistic studies show that salinomycin inhibits mitochondrial respiration via specifically suppressing complex I and II activities, reduces mitochondrial membrane potential and decreases energy reduction, followed by induction of oxidative stress and damage, AMPK activation and mTOR inhibition. Our study highlights that adding salinomycin to the existing treatment armamentarium for retinoblastoma is beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Bejjani A, Choi MR, Cassidy L, Collins DW, O’Brien JM, Murray T, Ksander BR, Seigel GM (2012) RB116: an RB1+ retinoblastoma cell line expressing primitive markers. Mol vis 18:2805–2813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busch M, Philippeit C, Weise A, Dunker N (2015) Re-characterization of established human retinoblastoma cell lines. Histochem Cell Biol 143:325–338

    Article  CAS  Google Scholar 

  • Cassoux N, Lumbroso L, Levy-Gabriel C, Aerts I, Doz F, Desjardins L (2017) Retinoblastoma: update on current management. Asia Pac J Ophthalmol (Philaos) 6:290–295

    Google Scholar 

  • Chandel NS, Schumacker PT (1999) Cells depleted of mitochondrial DNA (rho0) yield insight into physiological mechanisms. FEBS Lett 454:173–176

    Article  CAS  Google Scholar 

  • Cork GK, Thompson J, Slawson C (2018) Real talk: the inter-play between the mTOR, AMPK, and hexosamine biosynthetic pathways in cell signaling. Front Endocrinol (lausanne) 9:522

    Article  Google Scholar 

  • De Luca A, Fiorillo M, Peiris-Pages M, Ozsvari B, Smith DL, Sanchez-Alvarez R, Martinez-Outschoorn UE, Cappello AR, Pezzi V, Lisanti MP, Sotgia F (2015) Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 6:14777–14795

    Article  Google Scholar 

  • Dewangan J, Tandon D, Srivastava S, Verma AK, Yapuri A, Rath SK (2017) Novel combination of salinomycin and resveratrol synergistically enhances the anti-proliferative and pro-apoptotic effects on human breast cancer cells. Apoptosis 22:1246–1259

    Article  CAS  Google Scholar 

  • Gao CF, Xie Q, Su YL, Koeman J, Khoo SK, Gustafson M, Knudsen BS, Hay R, Shinomiya N, Vande Woude GF (2005) Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci USA 102:10528–10533

    Article  CAS  Google Scholar 

  • Gehrke T, Hackenberg S, Polat B, Wohlleben G, Hagen R, Kleinsasser N, Scherzad A (2018) Combination of salinomycin and radiation effectively eliminates head and neck squamous cell carcinoma cells in vitro. Oncol Rep 39:1991–1998

    CAS  PubMed  Google Scholar 

  • Gruber M, Handle F, Culig Z (2020) The stem cell inhibitor salinomycin decreases colony formation potential and tumor-initiating population in docetaxel-sensitive and docetaxel-resistant prostate cancer cells. Prostate 80:267–273

    Article  CAS  Google Scholar 

  • Harada Y, Ishii I, Hatake K, Kasahara T (2012) Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. Cancer Lett 319:83–88

    Article  CAS  Google Scholar 

  • Hashiguchi K, Zhang-Akiyama QM (2009) Establishment of human cell lines lacking mitochondrial DNA. Methods Mol Biol 554:383–391

    Article  CAS  Google Scholar 

  • Hochmair M, Rath B, Klameth L, Ulsperger E, Weinlinger C, Fazekas A, Plangger A, Zeillinger R, Hamilton G (2020) Effects of salinomycin and niclosamide on small cell lung cancer and small cell lung cancer circulating tumor cell lines. Investig New Drugs 38:946–955

    Article  CAS  Google Scholar 

  • Hu H, Deng F, Liu Y, Chen M, Zhang X, Sun X, Dong Z, Liu X, Ge J (2012) Characterization and retinal neuron differentiation of WERI-Rb1 cancer stem cells. Mol vis 18:2388–2397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke F, Yu J, Chen W, Si X, Li X, Yang F, Liao Y, Zuo Z (2018) The anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibition. Biochem Biophys Res Commun 504:374–379

  • Kivela T (2009) The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol 93:1129–1131

    Article  Google Scholar 

  • Klose J, Trefz S, Wagner T, Steffen L, Preissendorfer Charrier A, Radhakrishnan P, Volz C, Schmidt T, Ulrich A, Dieter SM, Ball C, Glimm H, Schneider M (2019) Salinomycin: anti-tumor activity in a pre-clinical colorectal cancer model. PLoS ONE 14:e0211916

    Article  CAS  Google Scholar 

  • Ko JC, Zheng HY, Chen WC, Peng YS, Wu CH, Wei CL, Chen JC, Lin YW (2016) Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression. Biochem Pharmacol 122:90–98

    Article  CAS  Google Scholar 

  • Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O’Dwyer KM, Liesveld JL, Brookes PS, Becker MW, Jordan CT (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12:329–341

    Article  CAS  Google Scholar 

  • Lee HG, Shin SJ, Chung HW, Kwon SH, Cha SD, Lee JE, Cho CH (2017) Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell. J Gynecol Oncol 28:e14

    Article  Google Scholar 

  • Luengo A, Gui DY, Vander Heiden MG (2017) Targeting metabolism for cancer therapy. Cell Chem Biol 24:1161–1180

    Article  CAS  Google Scholar 

  • Mahmood T, Yang PC (2012) Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4:429–434

    Article  Google Scholar 

  • Mai TT, Hamai A, Hienzsch A, Caneque T, Muller S, Wicinski J, Cabaud O, Leroy C, David A, Acevedo V, Ryo A, Ginestier C, Birnbaum D, Charafe-Jauffret E, Codogno P, Mehrpour M, Rodriguez R (2017) Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 9:1025–1033

    Article  CAS  Google Scholar 

  • Manago A, Leanza L, Carraretto L, Sassi N, Grancara S, Quintana-Cabrera R, Trimarco V, Toninello A, Scorrano L, Trentin L, Semenzato G, Gulbins E, Zoratti M, Szabo I (2015) Early effects of the antineoplastic agent salinomycin on mitochondrial function. Cell Death Dis 6:e1930

    Article  CAS  Google Scholar 

  • Manmuan S, Sakunrangsit N, Ketchart W (2017) Salinomycin overcomes acquired tamoxifen resistance through AIB1 and inhibits cancer cell invasion in endocrine resistant breast cancer. Clin Exp Pharmacol Physiol 44:1042–1052

    Article  CAS  Google Scholar 

  • Markowska A, Kaysiewicz J, Markowska J, Huczynski A (2019) Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg Med Chem Lett 29:1549–1554

    Article  CAS  Google Scholar 

  • Mitani M, Yamanishi T, Miyazaki Y, Otake N (1976) Salinomycin effects on mitochondrial ion translocation and respiration. Antimicrob Agents Chemother 9:655–660

    Article  CAS  Google Scholar 

  • Skeberdyte A, Sarapiniene I, Aleksander-Krasko J, Stankevicius V, Suziedelis K, Jarmalaite S (2018) Dichloroacetate and salinomycin exert a synergistic cytotoxic effect in colorectal cancer cell lines. Sci Rep 8:17744

    Article  CAS  Google Scholar 

  • Skrtic M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N, Lai CK, Eberhard Y, Bartoszko J, Spagnuolo P, Rutledge AC, Datti A, Ketela T, Moffat J, Robinson BH, Cameron JH, Wrana J, Eaves CJ, Minden MD, Wang JC, Dick JE, Humphries K, Nislow C, Giaever G, Schimmer AD (2011) Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20:674–688

    Article  CAS  Google Scholar 

  • Stenfelt S, Blixt MKE, All-Ericsson C, Hallbook F, Boije H (2017) Heterogeneity in retinoblastoma: a tale of molecules and models. Clin Transl Med 6:42

    Article  Google Scholar 

  • Sun J, Luo Q, Liu L, Yang X, Zhu S, Song G (2017) Salinomycin attenuates liver cancer stem cell motility by enhancing cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signalling pathway. Toxicology 384:1–10

    Article  CAS  Google Scholar 

  • Theriault BL, Dimaras H, Gallie BL, Corson TW (2014) The genomic landscape of retinoblastoma: a review. Clin Exp Ophthalmol 42:33–52

    Article  Google Scholar 

  • Tung CL, Chen JC, Wu CH, Peng YS, Chen WC, Zheng HY, Jian YJ, Wei CL, Cheng YT, Lin YW (2017) Salinomycin acts through reducing AKT-dependent thymidylate synthase expression to enhance erlotinib-induced cytotoxicity in human lung cancer cells. Exp Cell Res 357:59–66

    Article  CAS  Google Scholar 

  • Tyagi M, Patro BS (2019) Salinomycin reduces growth, proliferation and metastasis of cisplatin resistant breast cancer cells via NF-kB deregulation. Toxicol in Vitro 60:125–133

    Article  CAS  Google Scholar 

  • Winter U, Ganiewich D, Ottaviani D, Zugbi S, Aschero R, Sendoya JM, Cafferata EG, Mena M, Sgroi M, Sampor C, Lubieniecki F, Fandino A, Abba MC, Doz F, Podhjacer O, Carcaboso AM, Letouze E, Radvanyi F, Chantada GL, Llera AS, Schaiquevich P (2020) Genomic and transcriptomic tumor heterogeneity in bilateral retinoblastoma. JAMA Ophthalmol 138:569–574

    Article  Google Scholar 

  • Yu M, Li R, Zhang J (2016) Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer. Biochem Biophys Res Commun 471:639–645

    Article  CAS  Google Scholar 

  • Zheng J (2012) Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett 4:1151–1157

    Article  CAS  Google Scholar 

  • Zhou J, Sun M, Jin S, Fan L, Zhu W, Sui X, Cao L, Yang C, Han C (2019) Combined using of paclitaxel and salinomycin active targeting nanostructured lipid carriers against non-small cell lung cancer and cancer stem cells. Drug Deliv 26:281–289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Nature Science Foundation of Hubei Province (2016-A06).

Author information

Authors and Affiliations

Authors

Contributions

JL and YM designed the experiments; JL performed the experiments and wrote the manuscript; All authors interpreted the data, supervised the project and revised the manuscript.

Corresponding author

Correspondence to Yao Min.

Ethics declarations

Research involving human participants and/or animals

This work was approved by the institutional review board of Tongji Medical College, Huazhong University of Science and Technology on 26 August 2018 (Approval No. 2018-C05). This study was conducted in accordance with the Declaration of Helsinki.

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Min, Y. Pre-clinical evidence that salinomycin is active against retinoblastoma via inducing mitochondrial dysfunction, oxidative damage and AMPK activation. J Bioenerg Biomembr 53, 513–523 (2021). https://doi.org/10.1007/s10863-021-09915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-021-09915-2

Keywords

Navigation