Skip to main content

Advertisement

Log in

Re-characterization of established human retinoblastoma cell lines

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Retinoblastoma (RB) is the most common malignant intraocular childhood tumor. Forty years after their first description, in the present study, we re-characterized seven established retinoblastoma cell lines with regard to their RB1 mutation status, morphology, growth pattern, endogenous apoptosis levels, colony formation efficiency in soft agar and invasiveness and dissemination capacity in chick chorioallantoic membrane (CAM) assays. All RB cell lines predominantly resemble small epithelioid cells with little cytoplasm and large nucleus, which mainly grow in cell clusters, but sometimes form chain-like structures with incident loops or three-dimensional aggregates. We observed different growth rates for the different retinoblastoma cells investigated. RBL-30, RBL-13 and RBL 383 cells grew very slowly, whereas Y-79 cells grew fastest under our culture conditions. Apoptosis rates likewise differed with highest cell death levels in RB 383 and RB 355 and lowest in WERI-Rb1 and RBL-15. Contradicting former reports, six of the seven RB cell lines analyzed were able to form colonies in soft agarose after single cell seeding within 3 weeks of incubation. Upon inoculation of four out of seven RB cell lines on the dorsal CAM, GFP-positive cells were detectable in the ventral CAM and two RB cell lines caused tumor development, indicating their intravasation and dissemination potential. All RB cell lines exhibited the potential to extravasate from the capillary system after intravenous CAM injection. Our study provides valuable new details for future therapy-related retinoblastoma basic research in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong PB, Quigley JP, Sidebottom E (1982) Transepithelial invasion and intramesenchymal infiltration of the chick embryo chorioallantois by tumor cell lines. Cancer Res 42(5):1826–1837

    CAS  PubMed  Google Scholar 

  • Bogenmann E, Mark C (1983) Routine growth and differentiation of primary retinoblastoma cells in culture. J Natl Cancer Inst 70(1):95–104

    CAS  PubMed  Google Scholar 

  • Bookstein R, Lee EY, To H, Young LJ, Sery TW, Hayes RC, Friedmann T, Lee WH (1988) Human retinoblastoma susceptibility gene: genomic organization and analysis of heterozygous intragenic deletion mutants. Proc Natl Acad Sci 85(7):2210–2214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell M, Chader GJ (1988) Retinoblastoma cells in tissue culture. Ophthalmic Paediatr Genet 9(3):171–199

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Gallie BL, Squire JA (2001) Minimal regions of chromosomal imbalance in retinoblastoma detected by comparative genomic hybridization. Cancer Genet Cytogenet 129(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Pajovic S, Duckett A, Brown VD, Squire JA, Gallie BL (2002) Genomic amplification in retinoblastoma narrowed to 0.6 megabase on chromosome 6p containing a kinesin-like gene, RBKIN. Cancer Res 62(4):967–971

    CAS  PubMed  Google Scholar 

  • Chévez-Barrios P, Hurwitz MY, Louie K, Marcus KT, Holcombe VN, Schafer P, Aguilar-Cordova CE, Hurwitz RL (2000) Metastatic and nonmetastatic models of retinoblastoma. Am J Pathol 157(4):1405–1412

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi SW, Lee TW, Yang SW, Hong WS, Kim CM, Lee JO (1993) Loss of retinoblastoma gene and amplification of N-myc gene in retinoblastoma. J Korean Med Sci 8(1):73–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • del Cerro M, Seigel GM, Lazar E, Grover D, del Cerro C, Brooks DH, DiLoreto D Jr, Chader G (1993) Transplantation of Y79 cells into rat eyes: an in vivo model of human retinoblastomas. Invest Ophthalmol Vis Sci 34(12):3336–3346

    PubMed  Google Scholar 

  • Deryugina EI, Quigley JP (2008) Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol 130(6):1119–1130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deryugina EI, Zijlstra A, Partridge JJ, Kupriyanova TA, Madsen MA, Papagiannakopoulos T, Quigley JP (2005) Unexpected effect of matrix metalloproteinase down-regulation on vascular intravasation and metastasis of human fibrosarcoma cells selected in vivo for high rates of dissemination. Cancer Res 65(23):10959–10969

    Article  CAS  PubMed  Google Scholar 

  • Gallie BL, Albert DM, Wong JJY, Buyukmihci N, Puliafito CA (1977) Heterotransplantation of retinoblastoma into the athymic “nude” mouse. Invest Opthalmol Vis Sci 16:256–259

    CAS  Google Scholar 

  • Gallie BL, Holmes W, Phillips RA (1982) Reproducible growth in tissue culture of retinoblastoma tumor specimens. Cancer Res 42:301–305

    CAS  PubMed  Google Scholar 

  • Gallie BL, Campbell C, Devlin H, Duckett A, Squire JA (1999) Developmental basis of retinal-specific induction of cancer by RB mutation. Cancer Res 59(7 Suppl):1731s–1735s

    CAS  PubMed  Google Scholar 

  • Gordon JR, Quigley JP (1986) Early spontaneous metastasis in the human epidermoid carcinoma HEp3/chick embryo model: contribution of incidental colonization. Int J Cancer 38(3):437–444

    Article  CAS  PubMed  Google Scholar 

  • Griegel S, Hong C, Frötschl R, Hülser DF, Greger V, Horsthemke B, Rajewski MF (1990a) Newly established human retinoblastoma cell lines exhibit an “immortalized” but not an invasive phenotype in vitro. Int J Cancer 46:125–132

    Article  CAS  PubMed  Google Scholar 

  • Griegel S, Heise K, Kindler-Röhrborn A, Rajewsky MF (1990b) In vitro differentiation of human retinoblastoma cells into neuronal phenotypes. Differentiation 45(3):250–257

    Article  CAS  PubMed  Google Scholar 

  • Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197(4302):461–463

    Article  CAS  PubMed  Google Scholar 

  • Hartmann L, Neveling K, Borkens S, Schneider H, Freund M, Grassman E, Theiss S, Wawer A, Burdach S, Auerbach AD, Schindler D, Hanenberg H, Schaal H (2010) Correct mRNA processing at a mutant TT splice donor in FANCC ameliorates the clinical phenotype in patients and is enhanced by delivery of suppressor U1 snRNAs. Am J Hum Genet 87:480–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haubold M, Weise A, Stephan H, Dünker N (2010) Bone morphogenic protein 4 (BMP4) signaling in retinoblastoma cells. Int J Biol Sci 6(7):700–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inomata M, Kaneko A (1987) Chemosensitivity profiles of primary and cultured human retinoblastoma cells in a human tumor clonogenic assay. Jpn J Cancer Res 78(8):858–868

    CAS  PubMed  Google Scholar 

  • Inomata M, Kaneko A, Hoshi A (1986) Improved colony formation of cultured retinoblastoma cells. Invest Ophthalmol Vis Sci 27(9):1423–1428

    CAS  PubMed  Google Scholar 

  • Jiang Q, Lim R, Blodi FC (1984) Dual properties of cultured retinoblastoma cells: immunohistochemical characterization of neuronal and glial markers. Exp Eye Res 39(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Yu W, Kovalski K, Ossowski L (1998) Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Madreperla SA, Bookstein R, Jones OW, Lee WH (1991) Retinoblastoma cell lines Y79, RB355 and WERI-Rb27 are genetically related. Ophthalmic Paediatr Genet 12(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Madrid B, Donnez J, Van Eyck AS, Veiga-Lopez A, Dolmans MM, Van Langendonckt A (2009) Chick embryo chorioallantoic membrane (CAM) model: a useful tool to study short-term transplantation of cryopreserved human ovarian tissue. Fertil Steril 91(1):285–292

    Article  PubMed  Google Scholar 

  • McFall RC, Sery TW, Makadon M (1977) Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res 37:1003–1010

    CAS  PubMed  Google Scholar 

  • McLean I, Burnier M, Zimmerman L, Jakobiec F (1994) Tumors of the retina. Tumors of the eye and adnexa. In: Rosai J (ed) Atlas of tumor pathology. Armed Forces Institute of Pathology, Washington, pp 100–135

  • Mira E, Lacalle RA, Gómez-Moutón C, Leonardo E, Mañes S (2002) Quantitative determination of tumor cell intravasation in a real-time polymerase chain reaction-based assay. Clin Exp Metastasis 19(4):313–318

    Article  CAS  PubMed  Google Scholar 

  • Ossowski L (1988) In vivo invasion of modified chorioallantoic membrane by tumor cells: the role of cell surface-bound urokinase. J Cell Biol 107:2437–2445

    Article  CAS  PubMed  Google Scholar 

  • Palmer TD, Lewis J, Zijlstra A (2011) Quantitative analysis of cancer metastasis using an avian embryo model. J Vis Exp 51:e2815. doi:10.3791/2815

    Google Scholar 

  • Reid TW, Albert DM, Rabson AS, Russell P, Craft J, Chu EW, Tralka TS, Wilcox JL (1974) Characteristics of an established cell line of retinoblastoma. J Nat Cancer Inst 53(2):347–360

    CAS  PubMed  Google Scholar 

  • Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Brigitte L, Thériault BL, Nadia L, Prigoda-Lee NL, Spencer C, Dimaras H, Corson TW, Pang R, Massey C, Godbout R, Jiang Z, Zacksenhaus E, Paton K, Moll AC, Houdayer C, Raizis A, Halliday W, Lam WL, Boutros PC, Lohmann D, Dorsman JC, Gallie L (2013) Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 14:327–334

    Article  CAS  PubMed  Google Scholar 

  • Sasabe T, Inana G (1991) Mechanism of suppression of malignancy in hybrids between Y79 retinoblastoma and NIH3T3 cells. Invest Ophthalmol Vis Sci 32(7):2011–2019

    CAS  PubMed  Google Scholar 

  • Scher C, Haudenschild C, Klagsbrun M (1976) The chick chorioallantoic membrane as a model system for the study of tissue invasion by viral transformed cells. Cell 8(3):373–382

    Article  CAS  PubMed  Google Scholar 

  • Schmid CW, Jelinek WR (1982) The Alu family of dispersed repetitive sequences. Science 216(4550):1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Squire J, Gallie BL, Phillips RA (1985) A detailed analysis of chromosomal changes in heritable and non-heritable retinoblastoma. Hum Genet 4:291–301

    Article  Google Scholar 

  • Weise A, Dünker N (2013) High trefoil factor 1 (TFF1) expression in human retinoblastoma cells correlates with low growth kinetics, increased cyclin-dependent kinase (CDK) inhibitor levels and a selective down-regulation of CDK6. Histochem Cell Biol 139(2):323–338

    Article  CAS  PubMed  Google Scholar 

  • Zijlstra A, Mellor R, Panzarella G, Aimes RT, Hooper JD, Marchenko ND, Quigley JP (2002) A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res 62(23):7083–7092

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. D. Lohmann for help with the RB1 mutation analysis, Prof. B. Royer-Pokora for kindly providing the HEK293T cells, Dr. H. Hanenberg for the pCL7EGwo vector and Dr. H. Stephan for originally providing the RB cell lines. We would also like to thank U. Gerster and U. Laub for excellent technical assistance and D. Gioè for proofreading of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Dünker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busch, M., Philippeit, C., Weise, A. et al. Re-characterization of established human retinoblastoma cell lines. Histochem Cell Biol 143, 325–338 (2015). https://doi.org/10.1007/s00418-014-1285-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1285-z

Keywords

Navigation