Skip to main content

Advertisement

Log in

H+-dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Trypanosoma brucei is an extracellular protozoan parasite that causes human African trypanosomiasis or “sleeping sickness”. During the different phases of its life cycle, T. brucei depends on exogenous inorganic phosphate (Pi), but little is known about the transport of Pi in this organism. In the present study, we showed that the transport of 32Pi across the plasma membrane follows Michaelis-Menten kinetics and is modulated by pH variation, with higher activity at acidic pH. Bloodstream forms presented lower Pi transport in comparison to procyclic forms, that displayed an apparent K0.5 = 0.093 ± 0.008 mM. Additionally, FCCP (H+-ionophore), valinomycin (K+-ionophore) and SCH28080 (H+, K+-ATPase inhibitor) inhibited the Pi transport. Gene Tb11.02.3020, previously described to encode the parasite H+:myo-inositol transporter (TbHMIT), was hypothesized to be potentially involved in the H+:Pi cotransport because of its similarity with the Pho84 transporter described in S. cerevisiae and other trypanosomatids. Indeed, the RNAi mediated knockdown remarkably reduced TbHMIT gene expression, compromised cell growth and decreased Pi transport by half. In addition, Pi transport was inhibited when parasites were incubated in the presence of concentrations of myo-inositol that are above 300 μM. However, when expressed in Xenopus laevis oocytes, two-electrode voltage clamp experiments provided direct electrophysiological evidence that the protein encoded by TbHMIT is definitely a myo-inositol transporter that may be only marginally affected by the presence of Pi. These results confirmed the presence of a Pi carrier in T. brucei, similar to the H+-dependent inorganic phosphate system described in S. cerevisiae and other trypanosomatids. This transport system contributes to the acquisition of Pi and may be involved in the growth and survival of procyclic forms. In summary, this work presents the first description of a Pi transport system in T. brucei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMDP:

Aminomethylenediphosphonate

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

FCCP:

Carbonylcyanide-p-trifluoromethoxyphenylhydrazone

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

IDP:

Imidodiphosphate

PSG:

Phosphate-sodium-glucose

References

  • Auesukaree C, Homma T, Kaneko Y, Harashima S (2003) Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae. Biochem Biophys Res Commun 306(4):843–850

    Article  CAS  Google Scholar 

  • Bakker BM, Michels PAM, Opperdoes FR, Westerhoff HV (1999) What controls glycolysis in bloodstream form Trypanosoma brucei? J Biol Chem 274(21):14551–14559

    Article  CAS  Google Scholar 

  • Beschin A, Abbeele JVD, De Baetselier P, Pays E (2014) African trypanosome control in the insect vector and mammalian host. Trends Parasitol 30(11):538–547

    Article  CAS  Google Scholar 

  • Bun-Ya M, Nishimura M, Harashima S, Oshima Y (1991) The Pho84 Gene or Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11:3229–3238

    Article  CAS  Google Scholar 

  • Burns MJ, Nixon GJ, Foy CA, Harris N (2005) Standardisation of data from real-time quantitative PCR methods – evaluation of outliers and comparison of calibration curves. BMC Biotechnol 5:31

    Article  Google Scholar 

  • Ceasar SA, Baker A, Muench SP, Ignacimuthu S, Baldwin SA (2016) The conservation of phosphate-binding residues among PHT1 transporters suggests that distinct transport affinities are unlikely to result from differences in the phosphate-binding site. Biochem Soc Trans 44:1541–1548

    Article  CAS  Google Scholar 

  • Chaudhuri M, Ott RD, Hill GC (2006) Trypanosome alternative oxidase: from molecule to function. Trends In Parasitol 22(10):484–491

    Article  CAS  Google Scholar 

  • Chintagari NR, Mishra A, Su L, Wang Y, Ayalew S, Hartson SD et al (2010) Vacuolar ATPase regulates surfactant secretion in rat alveolar type ii cells by modulating lamellar body calcium. PLoS One 16(5):E9228

    Article  Google Scholar 

  • Clarkson AB Jr, Bienen EJ, Pollakisz G, Grady RW (1989) Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem 264(30):17770–17776

    CAS  Google Scholar 

  • De Koning HP, Watson CJ, Sutcliffe L, Jarvis SM (2000) Differential regulation of nucleoside and nucleobase transporters in Crithidia fasciculata and Trypanosoma brucei brucei. Mol Biochem Parasitol 106:93–107

    Article  CAS  Google Scholar 

  • de Souza Leite M, Thomaz R, Fonseca FV, Panizzutti R, Vercesi AE, Meyer-Fernandes JR (2007) Trypanosoma brucei brucei: biochemical characterization of Ecto-nucleoside triphosphate Diphosphohydrolase activities. Exp Parasitol 115(4):315–323

    Article  Google Scholar 

  • Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C (2011) T-coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17

    Article  CAS  Google Scholar 

  • Dick CF, Santos ALA, Majerowicz D, Gondim KC, Caruso-Neves C, Silva IV et al (2012) Na + −dependent and Na + −independent mechanisms for inorganic phosphate uptake in Trypanosoma rangeli. Biochim Biophys Acta 1820(7):1001–1008

    Article  CAS  Google Scholar 

  • Dick CF, Santos ALA, Majerowicz D, Paes LS, Giarola NLL, Gondim KC et al (2013) Inorganic phosphate uptake in Trypanosoma cruzi is coupled to K(+) cycling and to active Na(+) extrusion. Biochim Biophys Acta 1830(8):4265–4273

    Article  CAS  Google Scholar 

  • Dick CF, Santos ALA, Meyer-Fernandes JR (2014) Inorganic phosphate uptake in unicellular eukaryotes. Biochim Biophys Acta 1840(7):2123–2127

    Article  CAS  Google Scholar 

  • Docampo R, Scott DA, Vercesi AE, Moreno SN (1995) Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 310:1005–1012

    Article  CAS  Google Scholar 

  • Food And Agriculture Organization (2015) Avilable: http://www.fao.org/ag/againfo/programmes/en/paat/disease.html, Accessed 28 September 2015

  • Fristedt U, Berhe A, Ensler K, Norling B, Persson BL (1996) Isolation and characterization of membrane vesicles of Saccharomyces cerevisiae harboring the high-affinity phosphate transporter. Arch Biochem Biophys 330(1):133–141

    Article  CAS  Google Scholar 

  • Giarola NL, de-Almeida-Amaral EE, Collopy-Júnior I, Fonseca-De-Souza AL, Majerowicz D, Paes LS et al (2013) Trypanosoma cruzi: effects of heat shock on Ecto-Atpase activity. Exp Parasitol 133(4):434–441

    Article  CAS  Google Scholar 

  • Gonzalez-Salgado A, Steinmann ME, Greganova E, Rauch M, Mäser P, Sigel E et al (2012) Myo-inositol uptake is essential for bulk inositol phospholipid but not glycosylphosphatidylinositol synthesis in Trypanosoma brucei. J Biol Chem 287(16):13313–13323

    Article  CAS  Google Scholar 

  • González-Salgado A, Steinmann M, Major LL, Sigel E, Reymond JL, Smith TK, Bütikofer P (2015) Trypanosoma brucei bloodstream forms depend upon uptake of myo-inositol for Golgi complex phosphatidylinositol synthesis and normal cell growth. Eukaryot Cell 6:616–624

    Article  Google Scholar 

  • Harris RM, Webb DC, Howitt SM, Cox GB (2001) Characterization of Pita and Pitb from Escherichia coli. J Bacteriol 183(17):5008–5014

    Article  CAS  Google Scholar 

  • Huang G, Ulrich PN, Storey M, Johnson D, Tischer J, Tovar JA, Moreno SN, Orlando R, Docampo R (2014) Proteomic analysis of the acidocalcisome, an organelle conserved from bacteria to human cells. PLoS Pathog 11 10(12):e1004555

    Article  Google Scholar 

  • Ito M, Matsuka N, Izuka M, Haito S, Sakai Y et al (2005) Characterization of inorganic phosphate transport in osteoclast-like cells. Am J Physiol Cell Physiol 288:C921–C931

    Article  CAS  Google Scholar 

  • Jiang S, Anderson SA, Winget CD, Mukkada AJ (1994) Plasma Membrane K+/H + −ATPase From Leishmania donovani. J Cell Physiol 159:60–66

    Article  CAS  Google Scholar 

  • Jimenez V, Docampo R (2015) TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi. Mol Microbiol 97(5):911–925

    Article  CAS  Google Scholar 

  • Kriel J, Haesendonckx S, Rubio-Texeira M, Zeebroeck GV, Thevelein JM (2011) From transporter to transceptor: signaling from transporters provokes Re-evaluation of complex trafficking and regulatory controls. Bioassays 33:870–879

    Article  CAS  Google Scholar 

  • Lamarche MG, Wanner BL, Crépin S, Harel J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32(3):461–473

    Article  CAS  Google Scholar 

  • Levy S, Kafri M, Carmi M, Barkai N (2011) The competitive advantage of a dual-transporter system. Science 334:1408–1412

    Article  CAS  Google Scholar 

  • Lopes AH, Souto-Padrón T, Dias FA, Gomes MT, Rodrigues GC, Zimmermann LT et al (2010) Trypanosomatids: Odd Organisms. Devastating Diseases, Open Parasitol J 4:30–59

    Article  CAS  Google Scholar 

  • Lundh F, Mouillon J, Samyn D, Stadler K, Popova Y, Lagerstedt JO, Thevelein JM, Persson BL (2009) Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry 48:4497–4505

    Article  CAS  Google Scholar 

  • Marchesini N, Docampo R (2002) A plasma membrane P-type H(+)-Atpase regulates intracellular pH in Leishmania mexicana amazonensis. Mol Biochem Parasitol 119(2):225–236

    Article  CAS  Google Scholar 

  • Martinez P, Persson BL (1998) Identification, cloning and characterization of a Derepressible Na + −coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet 258(6):628–638

    Article  CAS  Google Scholar 

  • Martinez R, Wang Y, Benaim G, Benchimol M, De-Souza W, Scott D et al (2002) A proton pumping pyrophosphatase in the Golgi apparatus and plasma membrane vesicles of Trypanosoma cruzi. Mol Biochem Parasitol 120:205–213

    Article  CAS  Google Scholar 

  • Martins RM, Covarrubias C, Rojas RG, Silber AM, Yoshida N (2009) Use of L-proline and ATP production by Trypanosoma cruzi Metacyclic forms as requirements for host cell invasions. Infect Immun 77:3023–3032

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Nolan DP, Voorheis HP (2000) Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei. Eur J Biochem 267:4615–4623

    Article  CAS  Google Scholar 

  • Nordgård O, Kvaløy JT, Farmen RK, Heikkilä R (2006) Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. Anal Biochem 356:182–193

    Article  Google Scholar 

  • Pavón LR, Lundh F, Lundin B, Mishra A, Persson BL, Spetea C (2008) Arabidopsis Antr1 is a thylakoid Na+-dependent phosphate transporter. J Biol Chem 283(20):13520–13527

    Article  Google Scholar 

  • Persson BL, Berhe A, Fristedt U, Martinez P, Pattison J, Petersson J et al (1998) Phosphate permeases of Saccharomyces cerevisiae. Biochim Biophys Acta 1365(1–2):23–30

    Article  CAS  Google Scholar 

  • Persson BL, Petersson J, Fristedt U, Weinander R, Berhe A, Pattison J (1999) Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim Biophys Acta 16 1422(3):255–272

    Article  CAS  Google Scholar 

  • Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh D et al (2003) Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 43(4):225–244

    Article  CAS  Google Scholar 

  • Rodrigues CO, Scott DA, Docampo R (1999) Characterization of a vacuolar pyrophosphatase in Trypanosoma brucei and its localization to acidocalcisomes. Mol Cell Biol 19(11):7712–7723

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: S. Krawetz, S. Misener. (Eds.) bioinformatics methods and protocols. Methods Mol Biol 132:365–386

    CAS  Google Scholar 

  • Russo-Abrahão T, Alves-Bezerra M, Majerowicz D, Freitas-Mesquita AL, Dick CF, Gondim KC, Meyer-Fernandes JR (2013) Transport of inorganic phosphate in Leishmania infantum and compensatory regulation at low inorganic phosphate concentration. Biochim Biophys Acta 1830(3):2683–2689

    Article  Google Scholar 

  • Saliba KJ, Martin RE, Bröer A, Henry RI, Mccarthy CS et al (2006) Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature 443:582–585

    CAS  Google Scholar 

  • Samyn DR, Ruiz-P’avon L, Andersson MR, Popova Y, Thevelein JM, Persson BL (2012) Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H+ transceptor and its effect on Signalling to the PKA and PHO pathways. Biochem J 445:413–422

    Article  CAS  Google Scholar 

  • Schothorst J, Kankipati HN, Conrad M, Samyn DR, Zeebroeck GV, Popova Y et al (2013) Yeast nutrient Transceptors provide novel insight in the functionality of membrane transporters. Curr Genet 59:197–206

    Article  CAS  Google Scholar 

  • Singha UK, Sharma S, Chaudhuri M (2009) Downregulation of mitochondrial Porin inhibits cell growth and alters respiratory phenotype in Trypanosoma brucei. Eukaryot Cell 8(9):1418–1428

    Article  CAS  Google Scholar 

  • Steverding D (2008) The history of African trypanosomiasis. Parasit Vectors 1(1):3

    Article  Google Scholar 

  • Uyemura SA, Luo S, Vieira M, Moreno SN, Docampo R (2004) Oxidative phosphorylation and rotenone-insensitive malate- and NADH-Quinone oxidoreductases in Plasmodium yoelii yoelii mitochondria in situ. J Biol Chem 279:385–393

    Article  CAS  Google Scholar 

  • Van Der Heyden N, Docampo R (2002) Significant differences between procyclic and bloodstream forms of Trypanosoma brucei in the maintenance of their plasma membrane potential. J Eukaryot Microbiol 49(5):407–413

    Article  CAS  Google Scholar 

  • Vercesi AE, Moreno SN, Docampo R (1994) Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J 304(Pt1):227–233

    Article  CAS  Google Scholar 

  • Vieira DP, Paletta-da-Silva R, Saraiva EM, Lopes AH, Meyer-Fernandes JR (2011) Leishmania chagasi: an Ecto-3'-Nucleotidase activity modulated by inorganic phosphate and its possible involvement in parasite-macrophage interaction. Exp Parasitol 127(3):702–707

    Article  CAS  Google Scholar 

  • Vieira-Bernardo R, Gomes-Vieira AL, Carvalho-Kelly LF, Russo-Abrahão T, Meyer-Fernandes JR (2017) The biochemical characterization of two phosphate transport systems in Phytomonas serpens. Exp Parasitol 173:1–8

    Article  CAS  Google Scholar 

  • Vieyra A, Meyer-Fernandes JR, Gama OBH (1985) Phosphorolysis of acetyl phosphate by orthophosphate with energy conservation in the Phosphoanhydride linkage of pyrophosphate. Arch Biochem Biophys 238(2):574–583

    Article  CAS  Google Scholar 

  • Villa-Bellosta R, Sorribas V (2010) Compensatory regulation of the sodium/phosphate cotransporters Napi-IIc (Scl34a3) and pit-2 (Slc20a2) during pi deprivation and acidosis. Pflugers Arch 459(3):499–508

    Article  CAS  Google Scholar 

  • World Health Organization (2014) Available: http://www.who.int/en/, Accessed 20 December 2014.

  • Zvyagilskaya RA, Lundh F, Samyn D, Pattison-Granberg J, Mouillon JM, Popova Y et al (2008) Characterization of the Pho89 phosphate transporter by functional Hyperexpression in Saccharomyces cerevisiae. FEMS Yeast Res 8(5):685–696

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Fabiano Ferreira Esteves, Mr. Edimilson Pereira and Ms. Rosangela Rosa de Araújo for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Norton Heise or José Roberto Meyer-Fernandes.

Ethics declarations

Funding

This work was supported by grants from the Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 401134/2014–8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ e-26/201.300/2014) and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB). Additional funding was obtained from Swiss National Science Foundation grant CRSII3_141913 (to E.S. and P.B.).

Electronic supplementary material

Fig. S1

(PDF 37 kb)

Fig. S2

(PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo-Abrahão, T., Koeller, C.M., Steinmann, M.E. et al. H+-dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter. J Bioenerg Biomembr 49, 183–194 (2017). https://doi.org/10.1007/s10863-017-9695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9695-y

Keywords

Navigation