Skip to main content
Log in

Measuring the signs of the methyl 1H chemical shift differences between major and ‘invisible’ minor protein conformational states using methyl 1H multi-quantum spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Carr–Purcell–Meiboom–Gill (CPMG) type relaxation dispersion experiments are now routinely used to characterise protein conformational dynamics that occurs on the μs to millisecond (ms) timescale between a visible major state and ‘invisible’ minor states. The exchange rate(s) (\( k_{{{\text{ex}}}} \)), population(s) of the minor state(s) and the absolute value of the chemical shift difference \(|{\Delta \varpi }|\) (ppm) between different exchanging states can be extracted from the CPMG data. However the sign of \({\Delta \varpi }\) that is required to reconstruct the spectrum of the ‘invisible’ minor state(s) cannot be obtained from CPMG data alone. Building upon the recently developed triple quantum (TQ) methyl \( ^{1} {\text{H}} \) CPMG experiment (Yuwen in Angew Chem 55:11490–11494, 2016) we have developed pulse sequences that use carbon detection to generate and evolve single quantum (SQ), double quantum (DQ) and TQ coherences from methyl protons in the indirect dimension to measure the chemical exchange-induced shifts of the SQ, DQ and TQ coherences from which the sign of \({\Delta \varpi }\) is readily obtained for two state exchange. Further a combined analysis of the CPMG data and the difference in exchange induced shifts between the SQ and DQ resonances and between the SQ and TQ resonances improves the estimates of exchange parameters like the population of the minor state. We demonstrate the use of these experiments on two proteins undergoing exchange: (1) the ~ 18 kDa cavity mutant of T4 Lysozyme (\( k_{{{\text{ex}}}} \sim\,3500{\text{ s}}^{{ - 1}} \)) and (2) the \(\sim\,4.7\) kDa Peripheral Sub-unit Binding Domain (PSBD) from the acetyl transferase of Bacillus stearothermophilus (\(k_{ex} \sim\,13,000\hbox { s}^{-1}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahlner A, Carlsson M, Jonsson BH, Lundström P (2013) PINT: a software for integration of peak volumes and extraction of relaxation rates. J Biomol NMR 56(3):191–202

    Article  Google Scholar 

  • Allen MD, Broadhurst RW, Solomon RG, Perham RN (2005) Interaction of the E2 and E3 components of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Use of a truncated protein domain in NMR spectroscopy. FEBS J 272(1):259–268

    Article  Google Scholar 

  • Anthis NJ, Clore GM (2015) Visualizing transient dark states by NMR spectroscopy. Q Rev Biophys 48(1):35–116

    Article  Google Scholar 

  • Auer R, Neudecker P, Muhandiram DR, Lundstrom P, Hansen DF, Konrat R, Kay LE (2009) Measuring the signs of 1H(alpha) chemical shift differences between ground and excited protein states by off-resonance spin-lock R1\(\rho \) NMR spectroscopy. J Am Chem Soc 131(31):10832–10833

    Article  Google Scholar 

  • Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus I (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14(24):5355–5373

    Article  Google Scholar 

  • Baase WA, Liu L, Tronrud DE, Matthews BW (2010) Lessons from the lysozyme of phage T4. Protein Sci 19(4):631–641

    Article  Google Scholar 

  • Baldwin AJ, Religa TL, Hansen DF, Bouvignies G, Kay LE (2010) (13)CHD(2) methyl group probes of millisecond time scale exchange in proteins by (1)H relaxation dispersion: an application to proteasome gating residue dynamics. J Am Chem Soc 132(32):10992–10995

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006) C13-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Magn Reson Spectrosc 48(1):25–45

    Article  Google Scholar 

  • Bodenhausen G (1980) Multiple-quantum NMR. Progr Nucl Magn Reson Spectrosc 14:137–173

    Article  Google Scholar 

  • Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796

    Article  Google Scholar 

  • Bouvignies G (2011) ChemEx. https://github.com/gbouvignies/chemex

  • Bouvignies G, Korzhnev DM, Neudecker P, Hansen DF, Cordes MH, Kay LE (2010) A simple method for measuring signs of (1)H (N) chemical shift differences between ground and excited protein states. J Biomol NMR 47(2):135–141

    Article  Google Scholar 

  • Bouvignies G, Hansen DF, Vallurupalli P, Kay LE (2011a) Divided-evolution-based pulse scheme for quantifying exchange processes in proteins: powerful complement to relaxation dispersion experiments. J Am Chem Soc 133(6):1935–1945

    Article  Google Scholar 

  • Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, Bah A, Vernon RM, Dahlquist FW, Baker D, Kay LE (2011b) Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477(7362):111

    Article  ADS  Google Scholar 

  • Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630

    Article  ADS  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104(23):9615–9620

    Article  ADS  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2006) Protein NMR spectroscopy, principles and practice, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions, 1st edn. Oxford Science Publications, Oxford

    Google Scholar 

  • Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-beta protofibrils probed by solution NMR. Nature 480(7376):268–272

    Article  ADS  Google Scholar 

  • Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T (2009) Hidden alternate structures of proline isomerase essential for catalysis. Nature 462(7273):669

    Article  ADS  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254(5038):1598–1603

    Article  ADS  Google Scholar 

  • Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  Google Scholar 

  • Gardner KH, Konrat R, Rosen MK, Kay LE (1996) An (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated (15)N, (13)C-labeled proteins. J Biomol NMR 8(3):351–356

    Article  Google Scholar 

  • Gladkova C, Schubert AF, Wagstaff JL, Pruneda JN, Freund SMV, Komander D (2017) An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1. EMBO J 36(24):3555–3572. https://doi.org/10.15252/embj.201797876

    Article  Google Scholar 

  • Goddard TD, Kneller DG (2008) SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Gopalan AB, Hansen DF, Vallurupalli P (2018) CPMG experiments for protein minor conformer structure determination. Methods Mol Biol 1688:223–242

    Article  Google Scholar 

  • Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (\(\delta \)1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13(4):369–374

    Article  Google Scholar 

  • Grey MJ, Wang C, Palmer AG (2003) Disulfide bond isomerization in basic pancreatic trypsin inhibitor: multisite chemical exchange quantified by CPMG relaxation dispersion and chemical shift modeling. J Am Chem Soc 125(47):14324–14335

    Article  Google Scholar 

  • Grutsch S, Bruschweiler S, Tollinger M (2016) NMR methods to study dynamic allostery. PLoS Comput Biol 12(3):e1004620

    Article  ADS  Google Scholar 

  • Hansen AL, Kay LE (2014) Measurement of histidine pKa values and tautomer populations in invisible protein states. Proc Natl Acad Sci USA 111(17):E1705–E1712

    Article  ADS  Google Scholar 

  • Hansen DF, Kay LE (2011) Determining valine side-chain rotamer conformations in proteins from methyl 13C chemical shifts: application to the 360 kDa half-proteasome. J Am Chem Soc 133(21):8272–8281

    Article  Google Scholar 

  • Hansen DF, Vallurupalli P, Kay LE (2008a) Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. J Biomol NMR 41(3):113–120. https://doi.org/10.1007/s10858-008-9251-5

    Article  Google Scholar 

  • Hansen DF, Vallurupalli P, Lundstrom P, Neudecker P, Kay LE (2008b) Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J Am Chem Soc 130(8):2667–2675

    Article  Google Scholar 

  • Hansen DF, Neudecker P, Kay LE (2010a) Determination of isoleucine side-chain conformations in ground and excited states of proteins from chemical shifts. J Am Chem Soc 132(22):7589–7591

    Article  Google Scholar 

  • Hansen DF, Neudecker P, Vallurupalli P, Mulder FA, Kay LE (2010b) Determination of Leu side-chain conformations in excited protein states by NMR relaxation dispersion. J Am Chem Soc 132(1):42–43

    Article  Google Scholar 

  • Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25(3):243–248

    Article  Google Scholar 

  • Ishima R, Wingfield PT, Stahl SJ, Kaufman JD, Torchia DA (1998) Using amide H-1 and N-15 transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins: application to HIV-1 protease. J Am Chem Soc 120(40):10534–10542

    Article  Google Scholar 

  • Ishima R, Baber J, Louis JM, Torchia DA (2004) Carbonyl carbon transverse relaxation dispersion measurements and ms-micros timescale motion in a protein hydrogen bond network. J Biomol NMR 29(2):187–198

    Article  Google Scholar 

  • Kalia YN, Brocklehurst SM, Hipps DS, Appella E, Sakaguchi K, Perham RN (1993) The high-resolution structure of the peripheral subunit-binding domain of dihydrolipoamide acetyltransferase from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. J Mol Biol 230(1):323–341

    Article  Google Scholar 

  • Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J (2015) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122

    Article  Google Scholar 

  • Kloiber K, Konrat R (2000) Differential multiple-quantum relaxation arising from cross-correlated time-modulation of isotropic chemical shifts. J Biomol NMR 18(1):33–42

    Article  Google Scholar 

  • Korzhnev DM, Kloiber K, Kanelis V, Tugarinov V, Kay LE (2004a) Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. J Am Chem Soc 126(12):3964–3973

    Article  Google Scholar 

  • Korzhnev DM, Kloiber K, Kay LE (2004b) Multiple-quantum relaxation dispersion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory and application. J Am Chem Soc 126(23):7320–7329

    Article  Google Scholar 

  • Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE (2004c) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430(6999):586–590

    Article  ADS  Google Scholar 

  • Korzhnev DM, Orekhov VY, Kay LE (2005) Off-resonance R1\(\rho \) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. J Am Chem Soc 127(2):713–721

    Article  Google Scholar 

  • Korzhnev DM, Religa TL, Banachewicz W, Fersht AR, Kay LE (2010) A transient and low-populated protein-folding intermediate at atomic resolution. Science 329(5997):1312–1316

    Article  ADS  Google Scholar 

  • Kovrigin EL, Loria JP (2006) Characterization of the transition state of functional enzyme dynamics. J Am Chem Soc 128(24):7724–7725

    Article  Google Scholar 

  • Lee W, Tonelli M, Markley JL (2014) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327

    Article  Google Scholar 

  • Levitt MH (1982) Symmetrical composite pulse sequences for NMR population-inversion 2. Compensation of resonance offset. J Magn Reson 50(1):95–110

    ADS  Google Scholar 

  • Li D, Bruschweiler R (2015) \(\text{ PPM }_{\rm One}\): a static protein structure based chemical shift predictor. J Biomol NMR 62(3):403–409

    Article  Google Scholar 

  • Li DW, Bruschweiler R (2012) PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles. J Biomol NMR 54(3):257–265

    Article  Google Scholar 

  • Lichtenecker RJ, Weinhaupl K, Reuther L, Schorghuber J, Schmid W, Konrat R (2013) Independent valine and leucine isotope labeling in Escherichia coli protein overexpression systems. J Biomol NMR 57(3):205–209

    Article  Google Scholar 

  • Liu LJ, Baase WA, Matthews BW (2009) Halogenated benzenes bound within a non-polar cavity in T4 lysozyme provide examples of I \(\cdot \cdot \cdot \) S and I \(\cdot \cdot \cdot \) Se halogen-bonding. J Mol Biol 385(2):595–605

    Article  Google Scholar 

  • Loria JP, Rance M, Palmer AG (1999a) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121(10):2331–2332

    Article  Google Scholar 

  • Loria JP, Rance M, Palmer AG (1999b) A TROSY CPMG sequence for characterizing chemical exchange in large proteins. J Biomol NMR 15(2):151–155

    Article  Google Scholar 

  • Lundstrom P, Hansen DF, Vallurupalli P, Kay LE (2009a) Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy. J Am Chem Soc 131(5):1915–1926

    Article  Google Scholar 

  • Lundstrom P, Lin H, Kay LE (2009b) Measuring 13C\(\beta \) chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy. J Biomol NMR 44(3):139–155

    Article  Google Scholar 

  • Mackenzie HW, Hansen DF (2017) A (13)C-detected (15)N double-quantum NMR experiment to probe arginine side-chain guanidinium (15)N(eta) chemical shifts. J Biomol NMR 69(3):123–132

    Article  Google Scholar 

  • Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid Recording of 2D NMR-spectra without phase cycling—application to the study of hydrogen-exchange in proteins. J Magn Reson 85(2):393–399 ay905 Times Cited:1356 Cited References Count:18

    ADS  Google Scholar 

  • McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28(3):430–431

    Article  ADS  Google Scholar 

  • Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29(8):688–691

    Article  ADS  Google Scholar 

  • Millet O, Loria JP, Kroenke CD, Pons M, Palmer AG (2000) The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J Am Chem Soc 122(12):2867–2877

    Article  Google Scholar 

  • Morris GA, Freeman R (1979) Enhancement of nuclear magnetic-resonance signals by polarization transfer. J Am Chem Soc 101(3):760–762

    Article  Google Scholar 

  • Mulder FA (2009) Leucine side-chain conformation and dynamics in proteins from 13C NMR chemical shifts. ChemBioChem 10(9):1477–1479

    Article  Google Scholar 

  • Mulder FA, Mittermaier A, Hon B, Dahlquist FW, Kay LE (2001a) Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol 8(11):932–935

    Article  Google Scholar 

  • Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001b) Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123(5):967–975

    Article  Google Scholar 

  • Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28(19):7510–7516

    Article  Google Scholar 

  • Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundstrom P, Zarrine-Afsar A, Sharpe S, Vendruscolo M, Kay LE (2012) Structure of an intermediate state in protein folding and aggregation. Science 336(6079):362–366. https://doi.org/10.1126/science.1214203

    Article  ADS  Google Scholar 

  • Orekhov VY, Korzhnev DM, Kay LE (2004) Double- and zero-quantum NMR relaxation dispersion experiments sampling millisecond time scale dynamics in proteins. J Am Chem Soc 126(6):1886–1891

    Article  Google Scholar 

  • Oyen D, Fenwick RB, Stanfield RL, Dyson HJ, Wright PE (2015) Cofactor-mediated conformational dynamics promote product release from Escherichia coli dihydrofolate reductase via an allosteric pathway. J Am Chem Soc 137(29):9459–9468

    Article  Google Scholar 

  • Palmer AG (2014) Chemical exchange in biomacromolecules: past, present, and future. J Magn Reson 241:3–17. https://doi.org/10.1016/j.jmr.2014.01.008

    Article  ADS  Google Scholar 

  • Palmer AG, Massi F (2006) Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev 106(5):1700–1719. https://doi.org/10.1021/Cr0404287

    Article  Google Scholar 

  • Piserchio A, Warthaka M, Kaoud TS, Callaway K, Dalby KN, Ghose R (2017) Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2. Proc Natl Acad Sci USA 114(31):E6287–E6296

    Article  Google Scholar 

  • Rosenzweig R, Kay LE (2014) Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Ann Rev Biochem 83(83):291–315

    Article  Google Scholar 

  • Rosenzweig R, Sekhar A, Nagesh J, Kay LE (2017) Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. Elife 14:6

    Google Scholar 

  • Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M (2011) Structure-based prediction of methyl chemical shifts in proteins. J Biomol NMR 50(4):331

    Article  Google Scholar 

  • Sanchez-Medina C, Sekhar A, Vallurupalli P, Cerminara M, Munoz V, Kay LE (2014) Probing the free energy landscape of the fast-folding gpW protein by relaxation dispersion NMR. J Am Chem Soc 136(20):7444–7451

    Article  Google Scholar 

  • Sauerwein A, Hansen DF (2015) Relaxation dispersion NMR spectroscopy. Springer, Boston, pp 75–132

    Google Scholar 

  • Sekhar A, Kay LE (2013) NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc Natl Acad Sci USA 110(32):12867–12874

    Article  ADS  Google Scholar 

  • Serber Z, Richter C, Dotsch V (2001) Carbon-detected NMR experiments to investigate structure and dynamics of biological macromolecules. ChemBioChem 2(4):247–251

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling—WALTZ-16. J Magn Reson 52(2):335–338

    ADS  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu GH, Eletsky A, Wu YB, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105(12):4685–4690

    Article  ADS  Google Scholar 

  • Skrynnikov NR, Mulder FA, Hon B, Dahlquist FW, Kay LE (2001) Probing slow time scale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123(19):4556–4566

    Article  Google Scholar 

  • Skrynnikov NR, Dahlquist FW, Kay LE (2002) Reconstructing NMR spectra of invisible excited protein states using HSQC and HMQC experiments. J Am Chem Soc 124(41):12352–12360

    Article  Google Scholar 

  • Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445(7128):618–622

    Article  Google Scholar 

  • Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447(7147):1021–1025

    Article  ADS  Google Scholar 

  • Takeuchi K, Gal M, Shimada G, Wagner G (2012) Low gamma nuclei detection experiments for biomolecular NMR. In: Clore M, Potts J (eds) Recent developments in biomolecular NMR. Royal Society of Chemistry, Cambridge, pp 25–52

    Chapter  Google Scholar 

  • Tamiola K, Acar B, Mulder FA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132(51):18000–18003

    Article  Google Scholar 

  • Torchia DA (2015) NMR studies of dynamic biomolecular conformational ensembles. Prog Nucl Magn Reson Spectrosc 84–85:14–32

    Article  Google Scholar 

  • Trott O, Palmer AG (2002) R1\(\rho \) relaxation outside of the fast-exchange limit. J Magn Reson 154:157–160

    Article  ADS  Google Scholar 

  • Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28(2):165–172

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2007) Separating degenerate (1)H transitions in methyl group probes for single-quantum (1)H-CPMG relaxation dispersion NMR spectroscopy. J Am Chem Soc 129(30):9514–9521

    Article  Google Scholar 

  • Vallurupalli P, Hansen DF, Stollar E, Meirovitch E, Kay LE (2007) Measurement of bond vector orientations in invisible excited states of proteins. Proc Natl Acad Sci USA 104(47):473–477

    Article  Google Scholar 

  • Vallurupalli P, Hansen D, Kay LE (2008) Structures of invisible, excited protein states by relaxation dispersion nmr spectroscopy. Proc Natl Acad Sci USA 105(33):766–771. https://doi.org/10.1073/pnas.0804221105

    Article  Google Scholar 

  • Vallurupalli P, Hansen DF, Lundström P, Kay LE (2009) CPMG relaxation dispersion NMR experiments measuring glycine 1H\(\alpha \) and 13C\(\alpha \) chemical shifts in the invisible excited states of proteins. J Biomol NMR 45(1–2):45–55

    Article  Google Scholar 

  • Vallurupalli P, Bouvignies G, Kay LE (2011) Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR. J Phys Chem B 115(49):14891–14900

    Article  Google Scholar 

  • Vallurupalli P, Chakrabarti N, Pomes R, Kay LE (2016) Atomistic picture of conformational exchange in a T4 lysozyme cavity mutant: an experiment-guided molecular dynamics study. Chem Sci 7(6):3602–3613

    Article  Google Scholar 

  • van Ingen H, Vuister GW, Wijmenga S, Tessari M (2006) CEESY: characterizing the conformation of unobservable protein states. J Am Chem Soc 128(12):3856–3857

    Article  Google Scholar 

  • Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS ONE 7(9):e43725

    Article  ADS  Google Scholar 

  • Vugmeyster L, Kroenke CD, Picart F, Palmer AG, Raleigh DP (2000) 15N R1\(\rho \) measurements allow the determination of ultrafast protein folding rates. J Am Chem Soc 122(22):5387–5388

    Article  Google Scholar 

  • Wang CY, Palmer AG (2002) Differential multiple quantum relaxation caused by chemical exchange outside the fast exchange limit. J Biomol NMR 24(3):263–268

    Article  Google Scholar 

  • Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucl Acids Res 36:W496–W502

    Article  Google Scholar 

  • Xie XS (2002) Single-molecule approach to dispersed kinetics and dynamic disorder: probing conformational fluctuation and enzymatic dynamics. J Chem Phys 117(24):24–32. https://doi.org/10.1063/1.1521159

    Google Scholar 

  • Yuwen T, Vallurupalli P, Kay LE (2016) Enhancing the sensitivity of CPMG relaxation dispersion to conformational exchange processes by multiple-quantum spectroscopy. Angew Chem 55(38):11490–11494

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tairan Yuwen and Prof. Lewis E. Kay (University of Toronto) for useful discussions and for providing the Bruker TQ CPMG pulse sequence, Dr. G Bouvignies for providing ChemEx along with the source code, the national NMR facility at TIFR, Hyderabad for spectrometer time and Dr Krishna Rao for help with some of the experiments. The work was supported by generous startup funds from TCIS/TIFRH and Grant ECR/2016/001088 from SERB awarded to PV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramodh Vallurupalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalan, A.B., Vallurupalli, P. Measuring the signs of the methyl 1H chemical shift differences between major and ‘invisible’ minor protein conformational states using methyl 1H multi-quantum spectroscopy. J Biomol NMR 70, 187–202 (2018). https://doi.org/10.1007/s10858-018-0171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-018-0171-8

Keywords

Navigation