Skip to main content
Log in

The effects of oyster shell/alpha-calcium sulfate hemihydrate/platelet-rich plasma/bone mesenchymal stem cells bioengineering scaffold on rat critical-sized calvarial defects

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Engineering scaffolds combining natural biomineral and artificially synthesized material hold promising potential for bone tissue regeneration. We fabricated a bioengineering scaffold, oyster shell (OS) and alpha-calcium sulfate hemihydrate (α-CSH) as scaffold, platelet-rich plasma (PRP) as provider of growth factors and bone mesenchymal stem cells (BMSCs) as seed cells, and determined it could be applied as a new type of bone graft substitutes by rat calvarial defects repairing experiment in vitro and in vivo. SEM showed that the mean diameter of the pores was about 150 μm with a range of 50–200 μm, and scaffold’s porosity was ~27.4% by Archimedes’ Principle. In vitro, Scaffold + BMSCs + PRP group presented a higher ALP activity compared with other groups by ELISA (P < 0.05). But the expression of OC was not detectable on day 4 or 8. The MTT assay showed that the relative cell number of BMSCs+PRP group increased significantly (P < 0.05). In vivo, the smallest defect area of skull and highest volume of regenerated new bone were observed in Scaffold + PRP + BMSCs group by X-ray and Micro-CT analysis (P < 0.05). And the similar results also were observed in HE and Masson staining. The immunohistochemistry staining for osteogenic marker proteins ALP and OC showed that the most obvious positive staining was observed in Scaffold + PRP + BMSCs group (P < 0.05). The expression of inflammatory markers IL-6 and TNF-α was the lowest in control group (P < 0.05). In conclusion, a bioengineering scaffold based on OS, created by simply combining α-CSH and PRP and implanting with BMSCs, could be clinically useful and has marked advantages as a targeted, off-the-shelf, cell-loaded treatment option for the bone healing of critical-size calvarial defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

oyster shell:

(OS)

alpha-calcium sulfate hemihydrate:

(α-CSH)

platelet-rich plasma:

(PRP)

bone mesenchymal stem cell:

(BMSC)

fetal bovine serum:

(FBS)

phosphate buffer saline:

(PBS)

alkaline phosphatase:

(ALP)

osteocalcin:

(OC)

enzyme linked immunosorbent assay:

(ELISA)

hethylenediaminetetraacetic acid:

(EDTA)

calcium sulphate dihydrate:

(CSD)

References

  1. Haines NM, Lack WD, Seymour RB, Bosse MJ. Defining the lower limit of a “critical bone defect” in open diaphyseal tibial fractures. J Orthop Trauma. 2016;30:e158–63.

    Google Scholar 

  2. Roffi A, Di Matteo B, Krishnakumar GS, Kon E, Filardo G. Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. Int Orthopaedics. 2017;41:221–37.

    Google Scholar 

  3. Granel H, Bossard C, Nucke L, Wauquier F, Rochefort GY, Guicheux J, et al. Optimized bioactive glass: the quest for the bony graft. Adv Healthcare Mater. 2019;8:e1801542.

    Google Scholar 

  4. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;null:S3–6.

    Google Scholar 

  5. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245–60.

    CAS  Google Scholar 

  6. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone regeneration based on tissue engineering conceptions - a 21st century perspective. Bone Res. 2013;1:216–48.

    CAS  Google Scholar 

  7. Lee YH, Islam SMdA, Hong SJ, Cho KM, Math RK, Heo JY, et al. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell. Biosci Biotechnol Biochem. 2010;74:1517–21.

    CAS  Google Scholar 

  8. Mount AS, Wheeler AP, Paradkar RP, Snider D. Hemocyte-mediated shell mineralization in the eastern oyster. Science. 2004;304:297–300.

    CAS  Google Scholar 

  9. Gerhard EM, Wang W, Li C, Guo J, Ozbolat IT, Rahn KM, et al. Design strategies and applications of nacre-based biomaterials. Acta Biomater. 2017;54:21–34.

    CAS  Google Scholar 

  10. Atlan G, Balmain N, Berland S, Vidal B, Lopez E. Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. Comptes rendus de l’Academie des sciences Serie III, Sciences de la vie. 1997;320:253–8.

    CAS  Google Scholar 

  11. Lopez E, Vidal B, Berland S, Camprasse S, Camprasse G, Silve C. Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell. 1992;24:667–79.

    CAS  Google Scholar 

  12. Green DW, Kwon H-J, Jung H-S. Osteogenic potency of nacre on human mesenchymal stem cells. Mol Cells. 2015;38:267–72.

    CAS  Google Scholar 

  13. Lee GH, Khoury JG, Bell J-E, Buckwalter JA. Adverse reactions to OsteoSet bone graft substitute, the incidence in a consecutive series. The Lowa Orthopaedic J. 2002;22:35–8.

    Google Scholar 

  14. Ferguson JY, Dudareva M, Riley ND, Stubbs D, Atkins BL, McNally MA. The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. The Bone Joint J. 2014;null:829–36.

    Google Scholar 

  15. Coetzee AS. Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngology (Chicago, Ill: 1960). 1980;106:405–9.

    CAS  Google Scholar 

  16. Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am Vol. 2008;null:36–42.

    Google Scholar 

  17. Lang S, Loibl M, Herrmann M. Platelet-rich plasma in tissue engineering: hype and hope. Eur Surg Res. 2018;59:265–75.

    Google Scholar 

  18. Ahmed HH, Rashed LA, Mahfouz S, Hussein RE, Alkaffas M, Mostafa S, et al. Can mesenchymal stem cells pretreated with platelet-rich plasma modulate tissue remodeling in a rat with burned skin? Biochem Cell Biol. 2017;95:537–48.

    Google Scholar 

  19. Smith SE, Roukis TS. Bone and wound healing augmentation with platelet-rich plasma. Clin Podiatr Med Surg. 2009;26:559–88.

    Google Scholar 

  20. Kim YS, Lee HJ, Yeo JE, Kim YIL, Choi YJ, Koh YG. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid in patients with osteochondral lesion of the talus. Am J Sports Med. 2015;43:399–406.

    Google Scholar 

  21. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344:385.

    CAS  Google Scholar 

  22. Johari N, Fathi MH, Golozar MA. The effect of fluorine content on the mechanical properties of poly (ε-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone-tissue engineering. Ceram Int. 2011;37:3247–51.

    CAS  Google Scholar 

  23. Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 2015;44:446–55.

    CAS  Google Scholar 

  24. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    CAS  Google Scholar 

  25. Chen Y, Xu J, Huang Z, Yu M, Zhang Y, Chen H, et al. An innovative approach for enhancing bone defect healing using PLGA scaffolds seeded with extracorporeal-shock-wave-treated bone marrow mesenchymal stem cells (BMSCs). Sci Reports. 2017;7:44130.

    Google Scholar 

  26. Scaglione S, Lazzarini E, Ilengo C, Quarto R. A composite material model for improved bone formation. J Tissue Eng Regenerative Med. 2010;4:505–13.

    CAS  Google Scholar 

  27. Johari B, Ahmadzadehzarajabad M, Azami M, Kazemi M, Soleimani M, Kargozar S, et al. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds. J Biomed Mater Res Part A. 2016;104:1770–8.

    CAS  Google Scholar 

  28. Zhou D, Qi C, Chen Y-X, Zhu Y-J, Sun T-W, Chen F, et al. Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int J Nanomed. 2017;12:2673–87.

    CAS  Google Scholar 

  29. Liang P, Zheng J, Zhang Z, Hou Y, Wang J, Zhang C, et al. Bioactive 3D scaffolds self-assembled from phosphorylated mimicking peptide amphiphiles to enhance osteogenesis. J Biomater Sci Polymer Ed. 2019;30:34–48.

    CAS  Google Scholar 

  30. Coringa R, de Sousa EM, Botelho JN, Diniz RS, de Sa JC, da Cruz M, et al. Bone substitute made from a Brazilian oyster shell functions as a fast stimulator for bone-forming cells in an animal model. PLoS ONE. 2018;13:e0198697.

    Google Scholar 

  31. Stoppato M, Carletti E, Sidarovich V, Quattrone A, Unger RE, Kirkpatrick CJ, et al. Influence of scaffold pore size on collagen I development: a new in vitro evaluation perspective. J Bioactive Compatible Polymers. 2013;28:16–32.

    Google Scholar 

  32. Kim HW, Shin SY, Kim HE, Lee YM, Chung CP, Lee HH, et al. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. J Biomater Appl. 2008;22:485–504.

    CAS  Google Scholar 

  33. Fernandez E, Vlad MD, Gel MM, Lopez J, Torres R, Cauich JV, et al. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures. Biomaterials. 2005;26:3395–404.

    CAS  Google Scholar 

  34. Duplat D, Chabadel A, Gallet M, Berland S, Bedouet L, Rousseau M, et al. The in vitro osteoclastic degradation of nacre. Biomaterials. 2007;28:2155–62.

    CAS  Google Scholar 

  35. Duplat D, Gallet M, Berland S, Marie A, Dubost L, Rousseau M, et al. The effect of molecules in mother-of-pearl on the decrease in bone resorption through the inhibition of osteoclast cathepsin K. Biomaterials. 2007;28:4769–78.

    CAS  Google Scholar 

  36. Lorget F, Kamel S, Mentaverri R, Wattel A, Naassila M, Maamer M, et al. High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Commun. 2000;268:899–903.

    CAS  Google Scholar 

  37. Miyauchi A, Hruska KA, Greenfield EM, Duncan R, Alvarez J, Barattolo R, et al. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption. J Cell Biol. 1990;111:2543–52.

    CAS  Google Scholar 

  38. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847–55.

    CAS  Google Scholar 

  39. Ducy P, Zhang R, Geoffroy VR, Ridall AL, Karsenty GR. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.

    CAS  Google Scholar 

  40. Roubelakis MG, Trohatou O, Roubelakis A, Mili E, Kalaitzopoulos I, Papazoglou G, et al. Platelet-rich plasma (PRP) promotes fetal mesenchymal stem/stromal cell migration and wound healing process. Stem Cell Rev Reports. 2014;10:417–28.

    CAS  Google Scholar 

  41. Sun H, Feng K, Hu J, Soker S, Atala A, Ma PX. Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials. 2010;31:1133–9.

    CAS  Google Scholar 

  42. Kasten P, Vogel J, Geiger F, Niemeyer P, Luginbühl R, Szalay K. Biomaterials SKJ. The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials. 2008;29:3983–92.

    CAS  Google Scholar 

  43. Wang H, Zhao S, Xiao W, Cui X, Huang W, Rahaman MN, et al. Three-dimensional zinc incorporated borosilicate bioactive glass scaffolds for rodent critical-sized calvarial defects repair and regeneration. Colloids Surf B: Biointerfaces. 2015;130:149–56.

    CAS  Google Scholar 

  44. Liu M, Lv Y. Reconstructing bone with natural bone graft: a review of in vivo studies in bone defect animal model. Nanomaterials. 2018;8:1–19.

    Google Scholar 

  45. McGovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease. Dis Models Mech. 2018;11:1–14.

    Google Scholar 

  46. Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim. 2011;45:14–24.

    CAS  Google Scholar 

  47. Yu X, Sun J, Hu Y, Gao Y, Xiao C, Liu S, et al. Overexpression of PLAP-1 in bone marrow stromal cells inhibits the rat critical-size skull defect repair. J Mol Histol. 2015;46:251–61.

    CAS  Google Scholar 

  48. El Tamer MK, Reis RL. Progenitor and stem cells for bone and cartilage regeneration. J Tissue Eng Regen Med. 2009;3:327–37.

    CAS  Google Scholar 

  49. Ye X, Yin X, Yang D, Tan J, Liu G. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Tissue Eng Part C Methods. 2012;18:545–56.

    CAS  Google Scholar 

  50. Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, et al. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials. 2010;31:3572–9.

    CAS  Google Scholar 

  51. Kazemi SY, Biparva P, Ashtiani E. Cerastoderma lamarcki shell as a natural, low cost and new adsorbent to removal of dye pollutant from aqueous solutions: equilibrium and kinetic studies. Ecological Eng. 2016;88:82–9.

    Google Scholar 

  52. Balmain J, Hannoyer B, Lopez E. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima. J Biomed Mater Res. 1999;48:749–54.

    CAS  Google Scholar 

  53. Beuerlein MJ, McKee MD. Calcium sulfates: what is the evidence? J Orthopaedic Trauma. 2010;24:S46–51.

    Google Scholar 

  54. Shen Y, Yang S, Liu J, Xu H, Shi Z, Lin Z, et al. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. ACS Appl Mater Interfaces. 2014;6:12177–88.

    CAS  Google Scholar 

  55. Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W, Sheath PC, et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthopaedics Related Res. 2003;406:228–36.

    Google Scholar 

  56. Hammouche S, Khan W, Drouin H, Procter H, McNicholas M. Calcium salts bone regeneration scaffolds: a review article. Curr Stem Cell Res Therapy. 2012;7:336–46.

    CAS  Google Scholar 

  57. Kim YK, Lee JY, Kim SG, Lim SC. Guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate: case series. J Adv Prosthodontics. 2013;5:167–71.

    Google Scholar 

  58. Kanatani M, Sugimoto T, Kanzawa M, Yano S, Chihara K. High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Commun. 1999;261:144–8.

    CAS  Google Scholar 

  59. Thomas MV, Puleo DA, Al-Sabbagh M. Calcium sulfate: a review. J Long-Term Eff Med implants. 2005;15:599–607.

    CAS  Google Scholar 

  60. Yoshimi R, Yamada Y, Ito K, Nakamura S, Abe A, Nagasaka T, et al. Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering. J Craniofacial Surg. 2009;20:1523–30.

    Google Scholar 

  61. Man Y, Wang P, Guo Y, Xiang L, Yang Y, Qu Y, et al. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials. 2012;33:8802–11.

    CAS  Google Scholar 

  62. Magesh DPU, Kumaravelu C, Maheshwari GU. Efficacy of PRP in the reconstruction of mandibular segmental defects using iliac bone grafts. J Maxillofacial Oral Surg. 2012;12:160–7.

    Google Scholar 

  63. Siebrecht MA, De Rooij PP, Arm DM, Olsson ML, Aspenberg P. Platelet concentrate increases bone ingrowth into porous hydroxyapatite. Orthopedics. 2002;25:169–72.

    Google Scholar 

  64. Thorwarth M, Wehrhan F, Schultze-Mosgau S, Wiltfang J, Schlegel KA. PRP modulates expression of bone matrix proteins in vivo without long-term effects on bone formation. Bone. 2006;38:30–40.

    CAS  Google Scholar 

  65. Weibrich G, Hansen T, Kleis W, Buch R, Hitzler WE. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone. 2004;34:665–71.

    CAS  Google Scholar 

  66. Yamakawa J, Hashimoto J, Takano M, Takagi M. The bone regeneration using bone marrow stromal cells with moderate concentration platelet-rich plasma in femoral segmental defect of rats. Open Orthopaedics J. 2017;11:1–11.

    Google Scholar 

  67. Intini G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials. 2009;30:4956–66.

    CAS  Google Scholar 

  68. Li C, Li G, Liu M, Zhou T, Zhou H. Paracrine effect of inflammatory cytokine-activated bone marrow mesenchymal stem cells and its role in osteoblast function. J Biosci Bioeng. 2016;121:213–9.

    CAS  Google Scholar 

  69. Hess K, Ushmorov A, Fiedler J, Brenner RE, Wirth T. TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone. 2009;45:367–76.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Department of Health of Zhejiang Province (No. 2016KYB196) and Science and Technology Department of Zhejiang Province (No. 2017C37125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics

The experiments described in this study were approved by the Ethics Committee of the Second Affiliated Hospital of Wenzhou Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xie, L., Wang, X. et al. The effects of oyster shell/alpha-calcium sulfate hemihydrate/platelet-rich plasma/bone mesenchymal stem cells bioengineering scaffold on rat critical-sized calvarial defects. J Mater Sci: Mater Med 31, 96 (2020). https://doi.org/10.1007/s10856-020-06441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06441-2

Navigation