Skip to main content

Advertisement

Log in

Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biological effects of titanium (Ti) alloys were analyzed on biofilms of Candida albicans, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Streptococcus sanguinis, as well as on osteoblast-like cells (MG63) and murine macrophages (RAW 264.7). Standard samples composed of aluminum and vanadium (Ti-6Al-4V), and sample containing niobium (Ti-35Nb) and zirconium (Ti-13Nb-13Zr) were analyzed. Monomicrobial biofilms were formed on the Ti alloys. MG63 cells were grown with the alloys and the biocompatibility (MTT), total protein (TP) level, alkaline phosphatase (ALP) activity, and mineralization nodules (MN) formation were verified. Levels of interleukins (IL-1β and IL-17), tumor necrosis factor alpha (TNF-α), and oxide nitric (NO) were checked, from RAW 264.7 cells supernatants. Data were statically analyzed by one-way analysis of variance (ANOVA) and Tukey’s test, or T-test (P 0.05). Concerning the biofilm formation, Ti-13Nb-13Zr alloy showed the best inhibitory effect on E. faecalis, P. aeruginosa, and S. aureus. And, it also acted similarly to the Ti-6Al-4V alloy on C. albicans and Streptococcus spp. Both alloys were biocompatible and similar to the Ti-6Al-4V alloy. Additionally, Ti-13Nb-13Zr alloy was more effective for cell differentiation, as observed in the assays of ALP and MN. Regarding the stimulation for release of IL-1β and TNF-α, Ti-35Nb and Ti-13Nb-13Zr alloys inhibited similarly the synthesis of these molecules. However, both alloys stimulated the production of IL-17. Additionally, all Ti alloys showed the same effect for NO generation. Thus, Ti-13Nb-13Zr alloy was the most effective for inhibition of biofilm formation, cell differentiation, and stimulation for release of immune mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ozcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: advantages. Materials. 2012;5:1528–45.

    Article  CAS  Google Scholar 

  2. Ning C, Ding D, Dai K, Zhai W, Chen L. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys. Biomed Mater. 2010;5:45–56.

    Article  Google Scholar 

  3. Niinomi M, Nakai M, Hieda J. Developmentof new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–903.

    Article  CAS  Google Scholar 

  4. Ferrandini PL, Cardoso FF, Souza SA, Afonso CR, Caram R. Aging response of the Ti–35Nb–7Zr–5Ta and Ti–35Nb–7Ta alloys. J Alloy Compd. 2007;433:207–10.

    Article  CAS  Google Scholar 

  5. de Vasconcellos LM, Oliveira FN, Leite Dde O, de Vasconcellos LG, do Prado RF, Ramos CJ, et al. Novel production method of porous surface Ti samples for biomedical application. J Mater Sci Mater Med. 2012;23:357–64.

    Article  Google Scholar 

  6. Walkowiak-Przybyło M, Klimek L, Okrój W, Jakubowski W, Chwiłka M, Czajka A, et al. Adhesion, activation, and aggregation of blood platelets and biofilm formation on the surfaces of titanium alloys Ti6Al4V and Ti6Al7Nb. J Biomed Mater Res Part A. 2012;100:768–75.

    Article  Google Scholar 

  7. de Andrade DP, de Vasconcellos LM, Carvalho IC, Forte LF, de Souza Santos EL, Prado RF, et al. Titanium–35niobium alloy as a potential material for biomedical implants: in vitro study. Mat Sc Eng C. 2015;56:538–44.

    Article  Google Scholar 

  8. do Prado RF, Rabêlo SB, de Andrade DP, Nascimento RD, Henriques VA, Carvalho YR, Cairo CA, et al. Porous titanium and Ti–35Nb alloy: effects on gene expression of osteoblastic cells derived from human alveolar bone. J Mater Sci Mater Med. 2015;26:259.

    Article  Google Scholar 

  9. Shah FA, Trobos M, Thomsen P, Palmquist A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—is one truly better than the other? Mat Sc Eng C. 2016;62:960–6.

    Article  CAS  Google Scholar 

  10. Dewidar MM, Yoon HC, Lim JK. Mechanical properties of metals for biomedical applications usingpowder metallurgy process. Met Mater Int. 2006;12:193–206.

    Article  Google Scholar 

  11. Bottino MC, Coelho PG, Henriques VAR, Higa OZ, Bressiani AHA, Bressiani JC. Processing, characterization, and in vitro/in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys. J Biomed Mater Res. 2009;88A:689–96.

    Article  CAS  Google Scholar 

  12. Biesiekierski A, Lin J, Munir K, Ozan S, Li Y, Wen C. An investigation of the mechanical and microstructural evolution of a TiNbZr alloy with varied ageing time. Sci Rep. 2018;8:5737.

    Article  Google Scholar 

  13. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  14. Fojt J, Joska L, Malek J, Sefl V. Corrosion behavior of Ti-39Nb alloy for dentistry. Mat Sc Eng C. 2015;56:532–7.

    Article  CAS  Google Scholar 

  15. Miura K, Yamada N, Hanada S, Jung TK, Itoi E. The bone tissue compatibilityof a new Ti–Nb–Sn alloy with a low Young’smodulus. Acta Biomater. 2011;7:2320–6.

    Article  CAS  Google Scholar 

  16. Capellato P, Escada AL, Popat KC, Claro AP. Interaction between mesenchymal stem cells and Ti–30Ta alloy after surface treatment. J Biomed Mater Res A. 2014;102:2147–56.

    Article  Google Scholar 

  17. Aguilar C, Guerra C, Lascano S, Guzman D, Rojas PA, Thirumurugan M, et al. Synthesis and characterization of Ti–Ta–Nb–Mn foams. Mat Sc Eng C. 2016;58:420–31.

    Article  CAS  Google Scholar 

  18. do Prado RF, Esteves GC, Santos ELS, Bueno DAG, Cairo CAA, Vasconcellos LGO, et al. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS One. 2018;13:e0196169.

    Article  Google Scholar 

  19. Calderon Moreno J, Vasilescu C, Drob SL, Popa M, Drob P, Vasilescu E. Electrodeposition, characterization, and corrosion stability of nanostructured anodic oxides on new Ti–15Zr–5Nb alloy surface. J Nanomater. 2013;2013:1–11.

    Article  Google Scholar 

  20. Okazak Y, Nishimura E, Nakada H, Kobayashi K. Surface analysis of Ti–15Zr–4Nb–4Ta alloy after implantation in rat tibia. Biomaterials. 2001;22:599–607.

    Article  CAS  Google Scholar 

  21. Mareci D, Chelariu R, Gordin DM, Ungureanu G, Gloriant T. Comparative corrosion study of Ti–Ta alloys for dental applications. Acta Biomater. 2009;5:3625–39.

    Article  CAS  Google Scholar 

  22. Moretti B, Pesce V, Maccagnano G, Vicenti G, Lovreglio P, Soleo L, et al. Peripheral neuropathy after hip replacement failure: is vanadium the culprit? Lancet. 2012;379:1676.

    Article  Google Scholar 

  23. Aguilera-Correa JJ, Conde A, Arenas MA, de-Damborenea JJ, Marin M, Doadrio AL, et al. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection. Biomed Mater. 2017;12:045022.

    Article  Google Scholar 

  24. Morgenstern M, Moriarty TF, Kuehl R, Richards RG, McNally MA, Verhofstad MHJ, et al. International survey among orthopaedic trauma surgeons: lack of a definition of fracture-related infection. Injury. 2018;49:491–6.

    Article  CAS  Google Scholar 

  25. Altarawneh S, Bencharit S, Mendoza L, Curran A, Barrow D, Barros S, et al. Clinical and histological findings of denture stomatitis as related to intraoral colonization patterns of Candida albicans, salivary flow, and dry mouth. J Prosthodont. 2013;22:13–22.

    Article  Google Scholar 

  26. Sheppard DC, Howell PL. Biofilm exopolysaccharides of pathogenic fungi: lessons from bacteria. J Biol Chem. 2016;291:12529–37.

    Article  CAS  Google Scholar 

  27. Antunes HS, Rôças IN, Alves FR, Siqueira JF Jr. Total and specific bacterial levels in the apical root canal system of teeth with post-treatment apical periodontitis. J Endod. 2015;41:1037–42.

    Article  Google Scholar 

  28. Radik M, Grusovin MG, Canullo L. The microbiologic profile associated with peri-implantitis in humans: a systematic review. Int J Oral Maxillofac Implants. 2016;31:359–68.

    Google Scholar 

  29. Souto R, Silva-Boghossian CM, Colombo AP. Prevalence of Pseudomonas aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with chronic periodontal infection. Braz J Microbiol. 2014;45:495–501.

    Article  CAS  Google Scholar 

  30. Falkinham JO, Hilborn ED, Arduino MJ, Pruden A, Edwards MA. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ Health Perspect. 2015;123:749–58.

    Article  CAS  Google Scholar 

  31. Zhuang LF, Watt RM, Mattheos N, Si MS, Lai HC, Lang NP. Periodontal and peri-implant microbiota in patients with healthy and inflamed periodontal and peri-implant tissues. Clin Oral Implants Res. 2016;27:13–21.

    Article  Google Scholar 

  32. Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cells Mater. 2004;8:37–57.

    Article  CAS  Google Scholar 

  33. Benito N, Franco M, Ribera A, Soriano A, Rodriguez-Pardo D, Sorli L, et al. Time trends in the aetiology of prosthetic joint infections: a multicentre cohort study. Clin Microbiol Infect. 2016;22:732.

    Article  Google Scholar 

  34. Montanaro L, Campoccia D, Rizzi S, Donati ME, Breschi L, Prati C, et al. Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials. Biomaterials. 2004;25:4457–63.

    Article  CAS  Google Scholar 

  35. Beyth N, Bahir R, Matalon S, Domb AJ, Weiss EI. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent Mater. 2008;24:732–6.

    Article  CAS  Google Scholar 

  36. Souza JC, Ponthiaux P, Henriques M, Oliveira R, Teughels W, Celis JP, et al. Corrosion behaviour of titanium in the presence of Streptococcus mutans. J Dent. 2013;41:528–34.

    Article  CAS  Google Scholar 

  37. Balakrishnan M, Simmonds RS, Tagg JR. Dental caries is a preventable infectious disease. Aust Dent J. 2000;45:235–45.

    Article  CAS  Google Scholar 

  38. Kim HY, Yeo IS, Lee JB, Kim SH, Kim DJ, Han JS. Initial in vitro bacterial adhesion on dental restorative materials. Int J Artif Organs. 2012;35:773–79.

    Article  Google Scholar 

  39. Kirkpatrick CJ, Mittermayer C. Theoretical and practical aspects of testing potential biomaterials in vitro. J Mater Sci Mater Med. 1990;1:9e13.

    Article  Google Scholar 

  40. Bächle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein syntheses of osteoblastlike MG63 cells. Clin Oral Implant Res. 2004;15:683.e92.

    Article  Google Scholar 

  41. Kindle L, Rothe L, Kriss M, Osdoby P, Collin-Osdoby P. Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts. J Bone Min Res. 2006;21:193–206.

    Article  CAS  Google Scholar 

  42. Goodman SB. Wear particles, periprosthetic osteolysis and the immune system. Biomaterials. 2007;28:5044–8.

    Article  CAS  Google Scholar 

  43. Nakahama K. Cellular communications in bone homeostasis and repair. Cell Mol Life Sci. 2010;67:4001–9.

    Article  CAS  Google Scholar 

  44. Ito H. Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod Rheumatol. 2011;21:113–21.

    Article  CAS  Google Scholar 

  45. Ruan J, Yang H, Weng X, Miao J, Zhou K. Preparation and characterization of biomedical highly porous Ti–Nb alloy. J Mater Sci Mater Med. 2016;27:76.

    Article  Google Scholar 

  46. de Oliveira JR, de Aguiar Almeida RB, das Graças Figueiredo Vilela P, de Oliveira FE, da Rocha RF, Jorge AO, et al. Control of microorganisms of oral health interest with Arctium lappa L. (burdock) extract non-cytotoxic to cell culture of macrophages (RAW 264.7). Arch Oral Biol. 2014;59:808–14.

    Article  Google Scholar 

  47. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  Google Scholar 

  48. Gregory CA, Gunn WG, Peister A, Prockop DJ. An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridiniumchloride extraction. Anal Biochem. 2004;329:77–84.

    CAS  Google Scholar 

  49. Veiga C, Davim JP, Loureiro JR. Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci. 2012;32:133–48.

    CAS  Google Scholar 

  50. Davim JP. Machining of titanium alloys. Germany: Springer-Verlag Berlin Heidelberg; 2014. https://doi.org/10.1007/978-3-662-43902-9.

  51. Lauro CH, Filho SLMR, Brandão LC, Davim JP. Analysis of behaviour biocompatible titanium alloy (Ti–6Al–7Nb) in the micro-cutting. Measurement. 2016;93:529–40.

    Article  Google Scholar 

  52. Hwang IJ, Choe HC, Brantley WA. Electrochemical characteristics of Ti–6Al–4V after plasma electrolytic oxidation in solutions containing Ca, P, and Zn ions. Surf Coat Technol. 2017;320:458–66.

    Article  CAS  Google Scholar 

  53. Valdez-Salas B, Beltrán-Partida E, Nedev N, Ibarra-Wiley R, Salinas R, Curiel-Álvarez M, et al. Controlled antifungal behavior on Ti6Al4V nanostructured by chemical nanopatterning. Mater Sci Eng C Mater Biol Appl. 2019;96:677–83.

    Article  CAS  Google Scholar 

  54. Li M, Ma Z, Zhu Y, Xia H, Yao M, Chu X, et al. Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus. Adv Health Mater. 2016;5:5557–66.

    Google Scholar 

  55. Pantaroto HN, Amorim KP, Matozinho Cordeiro J, Souza JGS, Ricomini-Filho AP, Rangel EC, et al. Proteome analysis of the salivary pellicle formed on titanium alloys containing niobium and zirconium. Biofouling. 2019;35:173–86.

    Article  CAS  Google Scholar 

  56. Mitran V, Vasilescu C, Drob SI, Osiceanu P, Calderon-Moreno JM, Tabirca MC, et al. Biological behaviour and enhanced anticorrosive performance of the nitrided superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy. Biomed Res Int. 2015;2015:261802.

    Article  Google Scholar 

  57. Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol. 2007;179:1043–57.

    Article  CAS  Google Scholar 

  58. McMahon RE, Ma J, Verkhoturov SV, Munoz-Pinto D, Karaman I, Rubitschek F, et al. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys. Acta Biomater. 2012;8:2863–70.

    Article  CAS  Google Scholar 

  59. Kopova I, Stráský J, Harcuba P, Landa M, Janecek M, Bacákova L. Newlydeveloped Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increasedstrength andenhanced biocompatibility. Mat Sci Eng. 2016;60:230–8.

    Article  CAS  Google Scholar 

  60. Peticone C, De Silva Thompson D, Owens GJ, Kim HW, Micheletti M, Knowles JC, et al. Towards modular bone tissue engineering using Ti-Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies. J Biomater Appl. 2017;32:295–310.

    Article  CAS  Google Scholar 

  61. An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, et al. Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci. 2016;147:46–58.

    Article  CAS  Google Scholar 

  62. Halling Linder C, Ek-Rylander B, Krumpel M, Norgård M, Narisawa S, Millán JL, et al. Bone alkaline phosphatase and tartrate-resistant acid phosphatase: potential co-regulators of bone mineralization. Calcif Tissue Int. 2017;101:92–101.

    Article  CAS  Google Scholar 

  63. Goodman G, Starosvetsky D, Gotman I. Corrosion behavior of a low modulus beta–45%Nb alloy for use in medical implants. J Mater Sci Mater Med. 2006;17:63–7.

    Google Scholar 

  64. Taki N, Tatro JM, Lowe R, Goldberg VM, Greenfield EM. Comparison of the roles of IL-1, IL-6, and TNFα in cell culture and murine models of aseptic loosening. Bone. 2007;40:1276–83.

    Article  CAS  Google Scholar 

  65. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  66. Okafor CC, Haleem-Smith H, Laqueriere P, Manner PA, Tuan RS. Particulate endocytosis mediates biological responses of human mesenchymal stem cells to titanium wear debris. J Orthop Res. 2006;24:461–73.

    Article  CAS  Google Scholar 

  67. Dapunt U, Maurer S, Giese T, Gaida MM, Hänsch GM. The macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant-associated osteomyelitis: linking inflammation to bone degradation. Mediators Inflamm. 2014;2014:728619.

    Article  Google Scholar 

  68. Trindade MCD, Lind M, Sun D, Schurman DJ, Goodman SB, Smith RL. In vitro reaction to orthopaedic biomaterials by macrophages and lymphocytes isolated from patients undergoing revision surgery. Biomaterials. 2001;22:253–9.

    Article  CAS  Google Scholar 

  69. Masui T, Sakano S, Hasegawa Y, Warashina H, Ishiguro N. Expression of the inflammatory cytokines, RANKL and OPG induced by titanium, cobalt-chromium and polyethylene particles. Biomaterials. 2005;26:1695–702.

    Article  CAS  Google Scholar 

  70. Goodman G, Starosvetsky D, Gotman I. Corrosion behavior of a low modulus beta–45%Nb alloy for use in medical implants. J Mater Sci Mater Med. 2006;17:63–7.

    Google Scholar 

  71. Vallés G, González-Melendi P, González-Carrasco JL, Saldaña L, Sánchez-Sabaté E, Munuera L, et al. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials. 2006;27:5199–211.

    Article  Google Scholar 

  72. Conti HR, Gaffen SL. IL-17-mediated immunity to the opportunistic fungal pathogen candida albicans. J Immunol. 2015;195:780–8.

    Article  CAS  Google Scholar 

  73. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS- 552 mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol Vitr. 2011;25:231–341.

    Article  CAS  Google Scholar 

  74. Chen W, Li Z, Guo Y, Zhou Y, Zhang Z, Zhang Y, et al. Wear particles promote reactive oxygen species-mediated inflammation via the nicotinamide adenine dinucleotide phosphate oxidase pathway in macrophages surrounding loosened implants. Cell Physiol Biochem. 2015;35:1857–67.

    Article  CAS  Google Scholar 

  75. Parrish AR, Catania JM, Orozco J, Gandolfi AJ. Chemically induced oxidative stress disrupts the E-cadherin/catenin cell adhesion complex. Toxicol Sci. 1999;51:80–6.

    Article  CAS  Google Scholar 

  76. Aikawa M, Sugiyama S, Hill CC, Voglic SJ, Rabkin E, Fukumoto Y, et al. Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation. 2002;106:1390–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for Research Grant 2012/20311-8, and Scholarships 2015/01258-7 and 2013/08323-3; and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) for support provided as Master Scholarship during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonatas Rafael de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mello, D.d.C.R., de Oliveira, J.R., Cairo, C.A.A. et al. Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response. J Mater Sci: Mater Med 30, 108 (2019). https://doi.org/10.1007/s10856-019-6310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6310-2

Navigation