Skip to main content

Advertisement

Log in

Hydroxyapatite-chitosan biocomposites synthesized in the simulated body fluid and their drug loading studies

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hydroxyapatite (HAp) is a bioceramic applied in the biomedical areas, such as matrices for drug release control. Chitosan (CTS), a natural polymer, is another material has been widely investigated for its potential use in the drug delivery systems. In this study, the composites of HAp-CTS are produced in order to investigate their drug loading and release studies. First of all, HAp-CTS composites are produced in the presence of simulated body fluid (SBF). Analysis confirmed the structure of HAp-CTS composites. Secondly, composites are encapsulated with 5-Fluorouracil (5-FU). The weight ratio of CTS is varied to realize its effect on drug loading of 5-Fluorouracil, a cancer drug, for the ratios of 1:1, 1:2 and 1:4 of HAp-CTS. The weight ratio giving the greatest drug load efficiency is selected for the last step of the study. Crosslinking agent, glutaraldehyde, are changed from 0 to 5% on the selected sample, then, drug loading is examined again in various environment owing different pH. Furthermore, drug release studies are conducted. To understand the structure and morphology of the samples, XRD, FTIR, SEM and Uv-Spectrum are applied. It is observed that weight ratio of polymer and crosslinking agent can be manipulated to adjust drug loading. Release kinetics are shown the Fickian diffusion. This new produced material can be applicable for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

d:

Diameter of particles μ

References

  1. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–1510.

    Article  Google Scholar 

  2. Paul W, Sharma CP. Development of porous spherical hydroxyapatite granules: application towards protein delivery. J Mater Sci: Mater Med. 1999;10(7):383–8.

    Google Scholar 

  3. Oner M, Uysal U. Synthesis of hydroxyapatite crystals using carboxymethyl inulin for use as a delivery of ibuprofen. Mater Sci Eng: C. 2013;33(1):482–9.

    Article  Google Scholar 

  4. Pellegrino ED, Biltz RM. The composition of human bone in uremia: observations on the reservoir functions of bone and demonstration of a labile fraction of bone carbonate. Medicine. 1965;44(5):397–418.

    Article  Google Scholar 

  5. Saeri MR, Afshar A, Ghorbani M, Ehsani N, Sorrell CC. The wet precipitation process of hydroxyapatite. Mater Lett. 2003;57(24–25):4064–9.

    Article  Google Scholar 

  6. Afshar A, Ghorbani M, Ehsani N, Saeri MR, Sorrell CC. Some important factors in the wet precipitation process of hydroxyapatite. Mater Des. 2003;24(3):197–202.

    Article  Google Scholar 

  7. Masuda Y, Matubara K, Sakka S. Synthesis of hydroxyapatite from metal alkoxides through sol - gel technique. J Ceram Soc Japan. 1990;98:1266–77.

    Google Scholar 

  8. Vijayalakshmi U, Prabakaran K, Rajeswari S. Preparation and characterization of sol–gel hydroxyapatite and its electrochemical evaluation for biomedical applications. J Biomedical Mater Res Part A. 2008;87A(3):739–49.

    Article  Google Scholar 

  9. Monma H, Ueno S, Kanazawa T. Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate. J Chem Tech Biotechnol. 1981;31:15–24.

    Article  Google Scholar 

  10. Wang M-C, Chen H-T, Shih W-J, Chang H-F, Hon M-H, Hung I-M. Crystalline size, microstructure and biocompatibility of hydroxyapatite nanopowders by hydrolysis of calcium hydrogen phosphate dehydrate (DCPD). Ceram Int. 2015;41(2B):2999–3008.

    Article  Google Scholar 

  11. Zhu R, Yu R, Yao J, Wang D, Ke J. Morphology control of hydroxyapatite through hydrothermal process. J Alloys and Compd. 2008;457(1–2):555–9.

    Article  Google Scholar 

  12. Neira IS, Kolenko YV, Lebedev OI, Van Tendeloo G, Gupta HS, Guitián F, Yoshimura M. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Cryst Growth Des. 2009;9(1):466–74.

    Article  Google Scholar 

  13. Bayraktar D, Tas AC. Chemical preparation of carbonated calcium hydroxyapatite powders at 37°C in urea containing synthetic body fluids. J Eur Ceram Soc. 1999;19:2573–2579.

    Article  Google Scholar 

  14. Tas AC. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials. 2000;21(14):1429–1438.

    Article  Google Scholar 

  15. Landi E, Tampieri A, Celotti G, Langenati R, Sandri M, Sprio S. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development. Biomaterials. 2005;26:2835–45.

    Article  Google Scholar 

  16. Leen M, Rana D, Webster TJ, Ramalingam M. Accelerated synthesis of biomimetic nano hydroxyapatite using simulated body fluid. Mater Chem Phys. 2016;180(1):166–72.

    Article  Google Scholar 

  17. Jingxiao L, Fei S, Jing Z, Zinong K, Liting N, Jiaying L. Preparation and characterization of biomimetic hydroxyapatite in simulated body fluid. J Chin Ceram Soc. 2006;34(3):334–9.

    Google Scholar 

  18. Park KH, Kim SJ, Hwang MJ, Song HJ, Park YJ. Biomimetic fabrication of calcium phosphate/chitosan nanohybrid composite in modified simulated body fluids. Express Polym Lett. 2017;11(1):14–20.

    Article  Google Scholar 

  19. Rau JV, Generosi A, Komlev VS, Fosca M, Barinov SM, Albertini VR. Real-time monitoring of the mechanism of poorly crystalline apatite cement conversion in the presence of chitosan, simulated body fluid and human blood. Dalton Trans. 2010;39:11412–23.

    Article  Google Scholar 

  20. Xu K, Zhao Y, Li H. Fabrication and evaluation of hydroxyapatite-chitosan scaffold via simulated body fluid biomimetic mineralization. West China J Stomatology. 2016;34(1):6–11.

    Google Scholar 

  21. Basargan T, Nasun-Saygili G. Spray-dried mesoporous hydroxyapatite – chitosan biocomposites. Polym - Plast Technol Eng. 2015;54(11):1172–83.

    Article  Google Scholar 

  22. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials.. 2008;29(32):4314–22.

    Article  Google Scholar 

  23. Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, Li Q, Chen X, Ji J, Zhang Y, OuYang HW. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials. 2013;34(18):4404–17.

    Article  Google Scholar 

  24. Shahnavazi M, Ketabi MA, Fekrazad R, Sadeghi FMA, Tondnevis F, Raz M, Abolhasani MM, Rezaei-Tavirani M. Fabrication of chitosan-nano hydroxyapatite scaffold for dental tissue engineering. Key Eng Mater. 2017;720:223–7.

    Article  Google Scholar 

  25. Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci. 2010;55:675–709.

    Article  Google Scholar 

  26. Kim KS, Simon L. Application of a dissolution-diffusion model to the release of 5-fluorouracil from polymer microspheres. Chem Eng Comm. 2012;199:587–99.

    Article  Google Scholar 

  27. Santos C, Rovath CF, Franke RP, Almeida MM, Costa MEV. Spray-dried hydroxyapatite-5-Fluorouracil granules as a chemotherapeutic delivery system. Ceram Int. 2009;35(1):509–13.

    Article  Google Scholar 

  28. Liu Z, Rimmer S. Synthesis and release of 5-fluorouracil from poly(N-vinylpyrrolidinone) bearing 5-fluorouracil derivatives. J Controlled Release. 2002;81:91–9.

    Article  Google Scholar 

  29. Aydın-Tığlı RS, Pulat M. 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: Evaluation of controlled release kinetics. J Nanomaterials. 2012;2012:313961.

  30. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:721–734.

    Article  Google Scholar 

  31. Olukman M, Solak EK. Release of anticancer drug 5-fluorouracil from different ionically crosslinked alginate beads. J Biomater Nanobiotechnol. 2012;3(4):469–79.

    Article  Google Scholar 

  32. Kaushik D, Sardana S, Mishra D. In-vitro characterization and cytotoxicity analysis of 5-fluorouracil loaded chitosan microspheres for targeting colon cancer. Indian J Pharm. Educ Res. 2010;44(3):274–82.

    Google Scholar 

  33. Wilson OC Jr., Hull JR. Surface modification of nanophase hydroxyapatite with chitosan. Mater Sci Eng: C. 2008;28(3):434–7.

    Article  Google Scholar 

  34. Ganguly K, Aminabhavi TM, Kulkarni AR. Colon targeting of 5-fluorouracil using polyethylene glycol cross-linked chitosan microspheres enteric coated with cellulose acetate phthalate. I&EC Res. 2011;50:11797–807.

    Google Scholar 

  35. Kumar R, Prakash KH, Cheang P, Gower L, Khor KA. Chitosan-mediated crystallization and assembly of hydroxyapatite nanoparticles into hybrid nanostructured films. J R Soc Interface. 2008;5(21):427–39.

    Article  Google Scholar 

  36. Mihály J, Sterkel S, Ortner HM, Kocsis L, Hajba L, Furdyga É, Mink J. FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels. Croat Chem Acta. 2006;79(3):497–501.

    Google Scholar 

  37. Joseph T, Varghese HT, Panicker CY, Viswanathan K, Dolezal M, Van Alsenoy C. Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of N-[(4-(trifluoromethyl)phenyl]pyrazine-2-carboxamide by density functional methods. Arabian J Chem. 2017;10(Supplement 2):2281–2294.

  38. Shu C, Xianzhu Y, Zhangyin X, Guohua X, Hong L, Kangde Y. Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method. Ceram Int. 2007;33(2):193–6.

    Article  Google Scholar 

  39. Kim HS, Kim JT, Jung YJ, Ryu SC, Son HJ, Kim YG. Preparation of a porous chitosan/fibroin-hydroxyapatite composite matrix for tissue engineering. Macromol Res. 2007;15(1):65–73.

    Article  Google Scholar 

  40. Tummala S, Kumar MNS, Prakash A. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi. Pharm J. 2015;23(3):308–14.

    Google Scholar 

  41. Aubrey KR, Vandenberg RJ. Glycine transport inhibitors as potential antipsychotic drugs. Expert Opin Ther Targets. 2001;5(4):507–18.

    Article  Google Scholar 

  42. Liu J, Shi F, Yu L, Niu L, Gao S. Synthesis of chitosan-hydroxyapatite composites and its effect on the properties of bioglass bone cement. J Mater Sci Technol. 2009;25(4):551–5.

    Google Scholar 

  43. Li Y, Liu T, Zheng J, Xu X. Glutaraldehyde crosslinked chitosan/hydroxyapatite bone repair scaffold and its application as drug carrier for icariin. J Appl Polym Sci. 2013;130(3):1539–47.

    Article  Google Scholar 

  44. Babaei Z, Jahanshahi M, Rabiee SM. Preparation of nanocomposite via calcium phosphate formation in chitosan matrix using in situ precipitation approach. Middle-East J Scientific Res. 2013;13(7):963–7.

    Google Scholar 

  45. Wang DS, Li JG, Li HP, Tang FQ. Preparation and drug releasing property of magnetic chitosan-5-fluorouracil nano-particles. Trans Nonferrous Met Soc China. 2009;19(5):1232–6.

    Article  Google Scholar 

  46. Mohamed MB, Adbel-Ghani NT, El-Borady OM, El-Sayed MA. 5-Fluorouracil induces plasmonic coupling in gold nanospheres: new generation of chemotherapeutic agents. J Nanomed Nanotechnol. 2012;3:3–7.

    Article  Google Scholar 

  47. Gonçalves VL, Laranjeira M, Fávere VT, Pedrosa RC. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium. Polímeros. 2005;15(1):6–12.

    Article  Google Scholar 

  48. Pavanetto F, Genta I, Giunchedi P, Conti B, Conte U. Spray-dried albumin microspheres for the intra-articular delivery of dexamethasone. J Microencapsulation. 1994;11(4):445–54.

    Article  Google Scholar 

  49. He P, Davis SS, Illum L. Chitosan microspheres prepared by spray drying. Int J Pharm. 1999;187(1):53–65.

    Article  Google Scholar 

  50. Santos C, Martins MA, Franke R-P, Almeida MM, Costa MEV. Calcium phosphate granules for use as a 5-Fluorouracil delivery system. Ceram Int. 2009;35(4):1587–94.

    Article  Google Scholar 

  51. Gupta KC, Jabrail FH. Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydr Res. 2006;341:744–56.

    Article  Google Scholar 

  52. Li B, Shan C-L, Zhou Q, Fang Y, Wang Y–L, Xu F, Han L–R, Ibrahim M, Guo L–B, Xie G–L. Sun G – C. Synthesis, characterization, and antibacterial activity of crosslinked chitosan-glutaraldehyde. Mar Drugs. 2013;11(5):1534–52.

    Article  Google Scholar 

  53. Shabbear S, Ramanamurthy S, Ramanamurthy KV. Formulation and evaluation of chitosan sodium alginate microcapsules of 5-fluorouracil for colorectal cancer. Int J Res Pharm Chem. 2012;2(1):7–19.

    Google Scholar 

  54. Zhang HL, Wu SH, Tao Y, Zang LQ, Su ZQ. Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. J Nanomater. 2010;2010:898910.

  55. Sun L, Chen Y, Zhou Y, Guo D, Fan Y, Guo F, Zheng Y, Chen W. Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J Pharmaceutical Sci. 2017;12(5):418–423.

  56. Du Y-Z, Ying X-Y, Wang L, Zhai Y, Yuan H, Yu R–S, Hu F-Q. Sustained release of ATP encapsulated in chitosan oligosaccharide nanoparticles. Int J Pharm. 2010;392(1–2):164–9.

    Article  Google Scholar 

  57. Cho AR, Chun YG, Kin BK, Park DJ. Preparation of Chitosan–TPP microspheres as resveratrol carriers. J Food Sci. 2014;79(4):568–76.

    Article  Google Scholar 

  58. Tseng C–L, Chen JC, Wu YC, Fang HW, Lin FH, Tang TP. Development of lattice-inserted 5-Fluorouracil-hydroxyapatite nanoparticles as a chemotherapeutic delivery system. J Biomater Appl. 2015;30(4):388–97.

    Article  Google Scholar 

  59. Zhou Z, He S, Huang T, Peng C, Zhou H, Liu Q, Zeng W, Liu L, Huang H, Xiang L, Yan H. Preparation of gelatin/hyaluronic acid microspheres with different morphologies for drug delivery. Polym Bull. 2015;72:713–23.

    Article  Google Scholar 

  60. Arias JL. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules. 2008;13:2340–69.

    Article  Google Scholar 

  61. Chang SJ, Niu GC, Kuo SM, Chen SF. Preparation and preliminary characterization of concentric multi-walled chitosan microspheres. J Biomed Mat Res A. 2006;81:554–66.

    Google Scholar 

  62. Zhou Z, Liu L, Liu Q, Zhao Y, Xu G, Tang A, Zeng W, Yi Q, Zhou J. Study on controlled release of 5-fluorouracil from gelatin/chitosan microspheres. J Macromol Sci, A: Pure Appl Chem. 2012;49:1030–4.

    Article  Google Scholar 

  63. Huang KS, Lub K, Yeh C-S, Chung SR, Lin CH, Yang CH, Dong YS. Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J Controlled Release. 2009;137(1):15–19.

    Article  Google Scholar 

  64. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 2012;8:1401–21.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to show appreciation to Scientific Research Project Association of Istanbul Technical University for the foundation of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugba Basargan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basargan, T., Erdol-Aydin, N. & Nasun-Saygili, G. Hydroxyapatite-chitosan biocomposites synthesized in the simulated body fluid and their drug loading studies. J Mater Sci: Mater Med 28, 180 (2017). https://doi.org/10.1007/s10856-017-5961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5961-0

Navigation