Skip to main content

Advertisement

Log in

New synthesis method of HA/P(D,L)LA composites: study of fibronectin adsorption and their effects in osteoblastic behavior for bone tissue engineering

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel synthetic method to synthesize hydroxyapatite/poly (D,L) lactic acid biocomposite is presented in this study by mixing only the precursors hydroxyapatite and (D,L) LA monomer without adding neither solvent nor catalyst. Three compositions were successfully synthesized with the weight ratios of 1/1, 1/3, and 3/5 (hydroxyapatite/(D,L) lactic acid), and the grafting efficiency of poly (D,L) lactic acid on hydroxyapatite surface reaches up to 84 %. Scanning electron microscopy and Fourier transform infrared spectroscopy showed that the hydroxyapatite particles were successfully incorporated into the poly (D,L) lactic acid polymer and X ray diffraction analysis showed that hydroxyapatite preserved its crystallinity after poly (D,L) lactic acid grafting. Differential scanning calorimetry shows that Tg of hydroxyapatite/poly (D,L) lactic acid composite is less than Tg of pure poly (D,L) lactic acid, which facilitates the shaping of the composite obtained. The addition of poly (D,L) lactic acid improves the adsorption properties of hydroxyapatite for fibronectin extracellular matrix protein. Furthermore, the presence of poly (D,L) lactic acid on hydroxyapatite surface coated with fibronectin enhanced pre-osteoblast STRO-1 adhesion and cell spreading. These results show the promising potential of hydroxyapatite/poly (D,L) lactic acid composite as a bone substitute material for orthopedic applications and bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aboudzadeh N, Imani M, Shokrgozar MA, Khavandi A, Javadpour J, Shafieyan Y, Farokhi M. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res Part A. 2010;94A:137–45.

    Article  Google Scholar 

  2. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  Google Scholar 

  3. Kim SS, Park MS, Jeon O, Choi CY, Kim BS. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:1399–409.

    Article  Google Scholar 

  4. Zhang PB, Hong ZK, Yu T, Chen XS, Jing XB. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Biomaterials. 2009;30:58–70.

    Article  Google Scholar 

  5. Zhang RY, Ma PX. Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering. Macromol Biosci. 2004;4:100–11.

    Article  Google Scholar 

  6. Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Acta Biomater. 2009;5:2680–92.

    Article  Google Scholar 

  7. Yang Z, Jiang Y, Yu LX, Wen B, Li F, Sun S, Hou T. Preparation and characterization of magnesium doped hydroxyapatite–gelatin nanocomposite. J Mater Chem. 2005;15:1807–11.

    Article  Google Scholar 

  8. Itoh S, Kikuchi M, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials. 2002;23:3919–26.

    Article  Google Scholar 

  9. Chang JH, Park ME, Shin Y, Exarhos GJ, Kim KJ, Lee SC, Oh KS. Functional scaffolds of bicontinuous, thermoresponsive L-3-phase silica/hydroxyapatite nanocomposites. J Mater Chem. 2007;17:238–42.

    Article  Google Scholar 

  10. Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–57.

    Article  Google Scholar 

  11. Wei JC, Liu AX, Chen L, Zhang PB, Chen XS, Jing XB. The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of γ-benzyl-L-glutamate N-carboxyanhydride. Macromol Biosci. 2009;9:631–8.

    Article  Google Scholar 

  12. Murugan R, Ramakrishna S. Bioresorbable composite bone paste using poly-saccharide based nano hydroxyapatite. Biomaterials. 2004;25:3829–35.

    Article  Google Scholar 

  13. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  Google Scholar 

  14. Martina M, Hutmacher DW. Biodegradable polymers applied in tissue engineering research: a review. Polym Int. 2007;56:145–57.

    Article  Google Scholar 

  15. Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, Chen X, Jing X. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials. 2005;26:6296–304.

    Article  Google Scholar 

  16. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials. 2001;22:3197–211.

    Article  Google Scholar 

  17. Kim S, Kim SS, Lee SH, Eun Ahn S, Gwak SJ, Song JH, Kim BS, Chung HM. In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly(d,l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds. Biomaterials. 2008;29:1043–53.

    Article  Google Scholar 

  18. Singh R, Singh S, Lillard JW. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci. 2008;97:2497–523.

    Article  Google Scholar 

  19. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278:1–23.

    Article  Google Scholar 

  20. Kannan RM, Perumal O, Kannan S. Cellular interactions of nano drug delivery systems. In: Force microscopy: Applications in biology and medicine In: Jena B P, Hacker J K, editors. Hoerber John Wiley & Sons; 2006. pp. 113–36.

  21. Vert M, Christel P, Garreau H, Audion M, Chanavaz M, Chabot F. Totally bioresorbable composites systems for internal fixation of bone fractures. Polym Sci Technol. 1986;34:263–75.

    Google Scholar 

  22. Vert M, Li SM, Spenlehauer G, Guerin P. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med. 1992;3:432–46.

    Article  Google Scholar 

  23. Therin M, Christel P, Li S, Garreau H, Vert M. In vivo degradation of massive poly(α-hydroxy acids): validation of in vitro findings. Biomaterials. 1992;13:594–600.

    Article  Google Scholar 

  24. Neuendorf RE, Saiz E, Tomsia AP, Ritchie RO. Adhesion between biodegradable polymers and hydroxyapatite: relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomater. 2008;4:1288–96.

    Article  Google Scholar 

  25. Hong ZK, Qiu XY, Sun JR, Deng MX, Chen XS, Jing XB. Grafting polymerization of l-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 2004;45:6699–706.

    Article  Google Scholar 

  26. Qiu X, Chen L, Hu J, Sun J, Hong Z, Liu A, Chen X, Jing X. Surface-modified hydroxyapatite linked by L-lactic acid oligomer in the absence of catalyst. J Polym Sci, part A Polym Chem. 2005;43:5177–85.

    Article  Google Scholar 

  27. Qiu X, Hong Z, Hu J, Chen L, Chen X, Jing X. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide. Biomacromolecules. 2005;6:1193–9.

    Article  Google Scholar 

  28. Andrade JD. In surface and interfacial aspects of biomedical polymers: protein adsorption. New York: Plenum press; 1985. pp. 1–80.

  29. Norde W. Adsorption of proteins at solid-liquid interfaces. Cells Mat. 1995;5:97–112.

    Google Scholar 

  30. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:2311–21.

    Article  Google Scholar 

  31. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.

    Article  Google Scholar 

  32. El-Ghannam A, Ducheyne P, Shapiro IM. Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite. J Orthop Res. 1999;17:340–5.

    Article  Google Scholar 

  33. Villarreal DR, Sogal A, Ong JL. Protein adsorption and osteoblast responses to different calcium phosphate surfaces. J Oral Implantol. 1998;24:67–73.

    Article  Google Scholar 

  34. Dee KC, Puelo DA, Bizios R. Protein-Surface interactions. In: an introduction to tissue-biomaterial intercations. New York: John Wiley & Sons, Inc; 2002. pp. 37-52.

  35. Gugutkov D, Altankov G, Hernandez JCR, Pradas MM, Sanchez MS. Fibronectin activity on substrates with controlled -OH density. J Biomed Materials Res A. 2010;92A(1):322–31.

    Article  Google Scholar 

  36. Dolatshahi-Pirouz A, Jensen T, Foss M, Chevallier J, Besenbacher F. Enhanced surface activation of fibronectin upon adsorption on hydroxyapatite. Langmuir. 2009;25:2971–8.

    Article  Google Scholar 

  37. Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins. J Thromb Haemos. 2009;7:200–5.

    Article  Google Scholar 

  38. Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng. 2001;91:233–44.

    Article  Google Scholar 

  39. Palin E, Liu H, Webster TJ. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology. 2005;16:1828–35.

    Article  Google Scholar 

  40. Yala S, Khireddine H, Sidane D, Ziani S, Bir F. Surface modification of natural and synthetic hydroxyapatites powders by grafting polypyrrole. J Mater Sci. 2013;48:7215–23.

    Article  Google Scholar 

  41. Poulouin L, Gallet O, Rouahi M, Imhoff JM. Plasma fibronectin: three steps to purification and stability. Protein Expr Purif. 1999;17:146–52.

    Article  Google Scholar 

  42. Oyajobi BO, Lomri A, Hott M, Marie PJ. Isolation and characterization of human clonogenic osteoblast progenitors immunoselected from fetal bone marrow stroma using STRO-1 monoclonal antibody. J Bone Miner Res. 1999;14:351–61.

    Article  Google Scholar 

  43. Sidane D, Chicot D, Yala S, Ziani S, Khireddine H, Iost A, Decoopman X. Study of the mechanical behavior and corrosion resistance of hydroxyapatite sol-gel thin coatings on 316L stainless steel pre-coated with titania film. Thin Solid Films. 2015;593:71–80.

    Article  Google Scholar 

  44. Sidane D, Khireddine H, Yala S, Ziani S, Bir F, Chicot D. Morphological and mechanical properties of hydroxyapatite bilayer coatings deposited on 316L SS by sol-gel method. Metall Mater Trans B. 2015;46B:2340–7.

    Article  Google Scholar 

  45. Zheng X, Zhou S, Yu X, Li X, Feng B, Qu S, Weng J. Effect of in vitro degradation of poly(D,L-lactide)/β-tricalcium composite on its shape-memory properties. J Biomed Mater Res B Appl Biomater. 2008;86:170–80.

    Article  Google Scholar 

  46. Hong JL, Hyung WC, Kyung JK, Sang CL. Modification on hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem Mater. 2006;18:5111–18.

    Article  Google Scholar 

  47. Shan H, Zhang Z. Preparation of nanometer-sized ZrO2/Al2O3 powders by heterogeneous azeotropic distillation. J Eur Ceram Soc. 1997;17:713–17.

    Article  Google Scholar 

  48. Sharp JS, Forrest JA, Jones RA. Surface denaturation and amyloid fibril formation of insulin at model lipid-water interfaces. Biochem. 2002;41:15810–19.

    Article  Google Scholar 

  49. Engel M, Mierlo CV, Visser A. Kinetic and structural characterization of adsorption-induced unfolding of bovine α-lactalbumin. J Biol Chem. 2002;277:10922–30.

    Article  Google Scholar 

  50. Kim J, Somorjai GA. Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared−visible sum frequency generation and fluorescence microscopy. J Am Chem Soc. 2003;125:3150–8.

    Article  Google Scholar 

  51. Kondo A, Fukuda H. Effects of adsorption conditions on kinetics of protein adsorption and conformational changes at ultrafine silica particles. J Colloid and Interface Sci. 1998;198:34–41.

    Article  Google Scholar 

  52. Kondo A, Mihara J. Comparison of adsorption and conformation of hemoglobin and myoglobin on various inorganic ultrafine particles. J Colloid and Interface Sci. 1996;177:214–21.

    Article  Google Scholar 

  53. Pellenc D, Berry H, Gallet O. Adsorption-induced fibronectin aggregation and fibrillogenesis. J Colloid and Interface Sci. 2006;298:132–44.

    Article  Google Scholar 

  54. Persson M, Lorite GS, Kokkonen HE, Cho SW, Lehenkari PP, Skrifvarsc M, Tuukkanen J. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. J colloid surface B. 2014;121:409–16.

    Article  Google Scholar 

  55. Arnett T. Regulation of bone cell function by acid-base balance. Proc Nutr Soc. 2003;62:511–20.

    Article  Google Scholar 

  56. Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S. poly L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A. 2007;82(2):445–54.

    Article  Google Scholar 

  57. Costa DO, Prowse PD, Chrones T, Sims SM, Hamilton DW, Rizkalla AS, Dixon SJ. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings. Biomaterials. 2013;34:7215–26.

    Article  Google Scholar 

  58. Teti A. Bone development: overview of bone cells and signaling. Curr Osteoporos Rep. 2011;9:264–73.

    Article  Google Scholar 

  59. Arnett TR. Acidosis, hypoxia and bone. Arch Biochem Biophys. 2010;503:103–9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank F.VIDAL and S.ALFONSI (LPPI, Cergy-Pontoise University, Cergy-Pontoise, France) for use of the hydraulic press

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabeha Yala.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yala, S., Boustta, M., Gallet, O. et al. New synthesis method of HA/P(D,L)LA composites: study of fibronectin adsorption and their effects in osteoblastic behavior for bone tissue engineering. J Mater Sci: Mater Med 27, 140 (2016). https://doi.org/10.1007/s10856-016-5756-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5756-8

Keywords

Navigation