Skip to main content
Log in

In situ forming hydrogel composed of hyaluronate and polygalacturonic acid for prevention of peridural fibrosis

  • Clinical Applications of Biomaterials
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hyaluronic acid-based hydrogels can reduce postoperative adhesion. However, the long-term application of hyaluronic acid is limited by tissue mediated enzymatic degradation. To overcome this limitation, we developed a polygalacturonic acid and hyaluronate composite hydrogel by Schiff’s base crosslinking reaction. The polygalacturonic acid and hyaluronate composite hydrogels had short gelation time (less than 15 s) and degraded by less than 50 % in the presence of hyaluronidase for 7 days. Cell adhesion and migration assays showed polygalacturonic acid and hyaluronate composite hydrogels prevented fibroblasts from adhesion and infiltration into the hydrogels. Compared to hyaluronate hydrogels and commercial Medishield™ gels, polygalacturonic acid and hyaluronate composite hydrogel was not totally degraded in vivo after 4 weeks. In the rat laminectomy model, polygalacturonic acid and hyaluronate composite hydrogel also had better adhesion grade and smaller mean area of fibrous tissue formation over the saline control and hyaluronate hydrogel groups. Polygalacturonic acid and hyaluronate composite hydrogel is a system that can be easy to use due to its in situ cross-linkable property and potentially promising for adhesion prevention in spine surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Djukic S, Lang P, Morris J, Hoaglund F, Genant HK. The postoperative spine. Magnetic resonance imaging. Orthop Clin North Am. 1990;21:603–24.

    Google Scholar 

  2. Annertz M, Jonsson B, Stromqvist B, Holtås S. Serial MRI in the early postoperative period after lumbar discectomy. Neuroradiology. 1995;37:177–82.

    Article  Google Scholar 

  3. LaRocca H, Macnab I. The laminectomy membrane. Studies in its evolution, characteristics, effects and prophylaxis in dogs. J Bone Joint Surg Br. 1974;56B:545–50.

    Google Scholar 

  4. Robertson JT. Role of peridural fibrosis in the failed back: a review. Eur Spine J. 1996;5(Suppl 1):S2–6.

    Article  Google Scholar 

  5. Yeo Y, Highley CB, Bellas E, Ito T, Marini R, Langer R, et al. In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials. 2006;27:4698–705.

    Article  Google Scholar 

  6. Liu Y, Li H, Shu XZ, Gray SD, Prestwich GD. Crosslinked hyaluronan hydrogels containing mitomycin C reduce postoperative abdominal adhesions. Fertil Steril. 2005;83(Suppl 1):1275–83.

    Article  Google Scholar 

  7. Li H, Liu Y, Shu XZ, Gray SD, Prestwich GD. Synthesis and biological evaluation of a cross-linked hyaluronan-mitomycin C hydrogel. Biomacromolecules. 2004;5:895–902.

    Article  Google Scholar 

  8. Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials. 2004;25:1339–48.

    Article  Google Scholar 

  9. Miki D, Dastgheib K, Kim T, Pfister-Serres A, Smeds KA, Inoue M, et al. A photopolymerized sealant for corneal lacerations. Cornea. 2002;21:393–9.

    Article  Google Scholar 

  10. Van Beek M, Jones L, Sheardown H. Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials. 2008;29:780–9.

    Article  Google Scholar 

  11. Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials. 2007;28:975–83.

    Article  Google Scholar 

  12. Willats WG, McCartney L, Mackie W, Knox JP. Pectin: cell biology and prospects for functional analysis. Plant Mol Biol. 2001;47:9–27.

    Article  Google Scholar 

  13. Combo A, Aguedo M, Goffin D, Wathelet B. Enzymatic production of pectic oligosaccharides from polygalacturonic acid with commercial pectinase preparations. Food Bioproducts Process. 2012;90(3):588–96.

    Article  Google Scholar 

  14. Jensen S, Rolin C, Ipsen R. Stabilisation of acidified skimmed milk with HM pectin. Food Hydrocolloids. 2010;24(4):291–9.

    Article  Google Scholar 

  15. Sande SA. Pectin-based oral drug delivery to the colon. Expert Opin Drug Deliv. 2005;2:441–50.

    Article  Google Scholar 

  16. Khanna R, Katti KS, Katti DR. Bone nodules on chitosan-polygalacturonic acid-hydroxyapatite nanocomposite films mimic hierarchy of natural bone. Acta Biomater. 2011;7:1173–83.

    Article  Google Scholar 

  17. Lee M-W, Hung C-L, Cheng J-C, Wang Y-J. A new anti-adhesion film synthesized from polygalacturonic acid with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide crosslinker. Biomaterials. 2005;26:3793–9.

    Article  Google Scholar 

  18. Yeo Y, Adil M, Bellas E, Astashkina A, Chaudhary N, Kohane DS. Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J Controlled Release. 2007;120:178–85.

    Article  Google Scholar 

  19. Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res. 1999;47:152–69.

    Article  Google Scholar 

  20. Jia X, Colombo G, Padera R, Langer R, Kohane DS. Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials. 2004;25:4797–804.

    Article  Google Scholar 

  21. Bitter T, Muir HM. A modified uronic acid carbazole reaction. Anal Biochem. 1962;4:330–4.

    Article  Google Scholar 

  22. Cesaretti M, Luppi E, Maccari F, Volpi N. A 96-well assay for uronic acid carbazole reaction. Carbohydr Polym. 2003;54(1):59–61.

    Article  Google Scholar 

  23. Burdick JA, Chung C, Jia X, Randolph MA, Langer R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules. 2005;6:386–91.

    Article  Google Scholar 

  24. Neff JA, Caldwell KD, Tresco PA. A novel method for surface modification to promote cell attachment to hydrophobic substrates. J Biomed Mater Res. 1998;40:511–9.

    Article  Google Scholar 

  25. Yong-Hing K, Reilly J, de Korompay V, Kirkaldy-Willis WH. Prevention of nerve root adhesions after laminectomy. Spine. 1980;5:59–64.

    Article  Google Scholar 

  26. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials. 2001;22:3045–51.

    Article  Google Scholar 

  27. He Y, Revel M, Loty B. A quantitative model of post-laminectomy scar formation. Effects of a nonsteroidal anti-inflammatory drug. Spine. 1995;20:557–63 discussion579–80.

    Article  Google Scholar 

  28. Lim R, Morrill JM, Lynch RC, Reed KL, Gower AC, Leeman SE, et al. Practical limitations of bioresorbable membranes in the prevention of intra-abdominal adhesions. J Gastrointest Surg. 2009;13:35–41 discussion 41–2.

    Article  Google Scholar 

  29. Fürst W, Banerjee A. Release of glutaraldehyde from an albumin-glutaraldehyde tissue adhesive causes significant in vitro and in vivo toxicity. Annals Thorac Surg. 2005;79(5):1522–8.

    Article  Google Scholar 

  30. Ghosh K, Shu XZ, Mou R, Lombardi J, Prestwich GD, Rafailovich MH, et al. Rheological characterization of in situ cross-linkable hyaluronan hydrogels. Biomacromolecules. 2005;6:2857–65.

    Article  Google Scholar 

  31. Serban MA, Prestwich GD. Synthesis of hyaluronan haloacetates and biology of novel cross-linker-free synthetic extracellular matrix hydrogels. Biomacromolecules. 2007;8:2821–8.

    Article  Google Scholar 

  32. Zhang M, Desai T, Ferrari M. Proteins and cells on PEG immobilized silicon surfaces. Biomaterials. 1998;19:953–60.

    Article  Google Scholar 

  33. Lofas S. Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface plasmon resonance. Pure Appl Chem. 1995;67(5):829–34.

    Article  Google Scholar 

  34. Aplin AE, Howe AK, Juliano RL. Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol. 1999;11:737–44.

    Article  Google Scholar 

  35. Liu Y, Shu XZ, Gray SD, Prestwich GD. Disulfide-crosslinked hyaluronan-gelatin sponge: growth of fibrous tissue in vivo. J Biomed Mater Res A. 2004;68:142–9.

    Article  Google Scholar 

  36. Bourguignon LY, Zhu H, Shao L, Chen YW. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem. 2000;275:1829–38.

    Article  Google Scholar 

  37. Lei Y, Gojgini S, Lam J, Segura T. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials. 2011;32:39–47.

    Article  Google Scholar 

  38. Luijendijk RW, de Lange DC, Wauters CC, Hop WC, Duron JJ, Pailler JL, et al. Foreign material in postoperative adhesions. Ann Surg. 2005;223:242–8.

    Article  Google Scholar 

  39. Arung W. Pathophysiology and prevention of postoperative peritoneal adhesions. WJG. 2011;17:4545.

    Article  Google Scholar 

  40. Einhaus SL, Robertson JT, Dohan FC, Wujek JR, Ahmad S. Reduction of peridural fibrosis after lumbar laminotomy and discectomy in dogs by a resorbable gel (ADCON-L). Spine. 1997;22:1440–6 discussion 1446–7.

    Article  Google Scholar 

  41. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.

    Article  Google Scholar 

  42. Kim KD, Wang JC, Robertson DP, Brodke DS, Olson EM, Duberg AC, et al. Reduction of radiculopathy and pain with Oxiplex/SP gel after laminectomy, laminotomy, and discectomy: a pilot clinical study. Spine. 2003;28:1080–7 discussion 1087–8.

    Google Scholar 

  43. Rodgers KE, Robertson JT, Espinoza T, Oppelt W, Cortese S, diZerega GS, et al. Reduction of epidural fibrosis in lumbar surgery with Oxiplex adhesion barriers of carboxymethylcellulose and polyethylene oxide. Spine J. 2003;3:277–83.

    Article  Google Scholar 

  44. Kim KD, Wang JC, Robertson DP, Brodke DS, BenDebba M, Block KM, et al. Reduction of leg pain and lower-extremity weakness for 1 year with Oxiplex/SP gel following laminectomy, laminotomy, and discectomy. Neurosurg Focus. 2004;17(1):1–6.

    Article  Google Scholar 

  45. Liu L-S, Berg RA. Adhesion barriers of carboxymethylcellulose and polyethylene oxide composite gels. J Biomed Mater Res. 2002;63:326–32.

    Article  Google Scholar 

  46. Liu J, Ni B, Zhu L, Yang J, Cao X, Zhou W. Mitomycin C-polyethylene glycol controlled-release film inhibits collagen secretion and induces apoptosis of fibroblasts in the early wound of a postlaminectomy rat model. Spine J. 2010;10:441–7.

    Article  Google Scholar 

  47. Kasimcan MO, Bakar B, Aktaş S, Alhan A, Yilmaz M. Effectiveness of the biophysical barriers on the peridural fibrosis of a postlaminectomy rat model: an experimental research. Injury Elsevier Ltd. 2011;42:778–81.

    Article  Google Scholar 

Download references

Acknowledgments

Support for this research was provided through National Taiwan University Hospital Hsin-Chu Branch from Grants HCH 101-19.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tse-Ying Liu or Ming-Hong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY., Peng, HH., Chen, MH. et al. In situ forming hydrogel composed of hyaluronate and polygalacturonic acid for prevention of peridural fibrosis. J Mater Sci: Mater Med 26, 168 (2015). https://doi.org/10.1007/s10856-015-5478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5478-3

Keywords

Navigation