Skip to main content
Log in

Phosphatidylethanolamine biomimetic coating increases mesenchymal stem cell osteoblastogenesis

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Previous observations (e.g., decreased bacterial adhesion) have shed the light on the auspicious possibility to use phosphatidylethanolamine as biomimetic coating for metal implants. Additionally, it was experimentally shown that phosphatidylethanolamine induces bone formation, however, up to now no study was performed to understand this observation or to find an explanation. In an attempt to unveil how and why phosphatidylethanolamine can improve cell metabolism and osteogenic differentiation, primary cells (human umbilical cord perivascular cells) were cultured on native or phosphatidylethanolamine coated surfaces. Several parameters were followed on gene (real time polymerase chain reaction) and protein (e.g., dot-blot and ELISA tests) levels. It was determined that phosphatidylethanolamine potentiates cell metabolism, osteogenic differentiation, and mineralisation early processes. By preventing biofilm formation while promoting new bone formation, phosphatidylethanolamine could be easily implemented as implant bio-mimicking coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993;294(Pt 1):1–14.

    Google Scholar 

  2. Schlegel RA, Williamson P. Phosphatidylserine, a death knell. Cell Death Differ. 2001;8(6):551–63.

    Article  Google Scholar 

  3. Lucero HA, Robbins PW. Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys. 2004;426(2):208–24.

    Article  Google Scholar 

  4. Wuthier RE. Lipid composition of isolated epiphyseal cartilage cells, membranes and matrix vesicles. Biochim Biophys Acta. 1975;409(1):128–43.

    Article  Google Scholar 

  5. Camolezi FL, Daghastanli KR, Magalhaes PP, Pizauro JM, Ciancaglini P. Construction of an alkaline phosphatase-liposome system: a tool for biomineralization study. Int J Biochem Cell Biol. 2002;34(9):1091–101.

    Article  Google Scholar 

  6. Eanes ED. Mixed phospholipid liposome calcification. Bone Mineral. 1992;17(2):269–72.

    Article  Google Scholar 

  7. Letellier SR, Lochhead MJ, Campbell AA, Vogel V. Oriented growth of calcium oxalate monohydrate crystals beneath phospholipid monolayers. Biochim Biophys Acta. 1998;1380(1):31–45.

    Article  Google Scholar 

  8. Santin M, Rhys-Williams W, O’Reilly J, Davies MC, Shakesheff K, Love WG, et al. Calcium-binding phospholipids as a coating material for implant osteointegration. J R Soc Interface. 2006;3(7):277–81.

    Article  Google Scholar 

  9. Ishihara K, Nakabayashi N, Fukumoto K, Aoki J. Improvement of blood compatibility on cellulose dialysis membrane. I. Grafting of 2-methacryloyloxyethyl phosphorylcholine on to a cellulose membrane surface. Biomaterials. 1992;13(3):145–9.

    Article  Google Scholar 

  10. Krishna OD, Kim K, Byun Y. Covalently grafted phospholipid monolayer on silicone catheter surface for reduction in platelet adhesion. Biomaterials. 2005;26(34):7115–23.

    Article  Google Scholar 

  11. Willumeit R, Schuster A, Iliev P, Linser S, Feyerabend F. Phospholipids as implant coatings. J Mater Sci Mater Med. 2007;18(2):367–80.

    Article  Google Scholar 

  12. Willumeit R, Schossig M, Clemens H, Feyerabend F. In-vitro interactions of human chondrocytes and mesenchymal stem cells, and of mouse macrophages with phospholipid-covered metallic implant materials. Eur Cell Mater. 2007;13:11–25.

    Google Scholar 

  13. Kochanowski A, Hoene A, Patrzyk M, Walschus U, Finke B, Luthringer B, et al. Examination of the inflammatory response following implantation of titanium plates coated with phospholipids in rats. J Mater Sci Mater Med. 2011;22(4):1015–26.

    Article  Google Scholar 

  14. Golub M, Lott D, Watkins E, Garamus V, Luthringer B, Stoermer M, et al. X-ray and neutron investigation of self-assembled lipid layers on a titanium surface. Biointerphases. 2013;8(1):21.

    Article  Google Scholar 

  15. Willumeit R, Feyerabend F, Kamusewitz H, Schossig M, Clemens H. Biological multi-layer systems as implant surface modification. Materialwiss Werkstofftech. 2003;34(12):1084–93.

    Article  Google Scholar 

  16. Luthringer BJC, Ali F, Akaichi H, Feyerabend F, Ebel T, Willumeit R. Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds. J Mater Sci Mater Med. 2013:1–22. DOI:10.1007/s10856-013-4989-z.

  17. Lefever S, Vandesompele J, Speleman F, Pattyn F. RTPrimerDB: the portal for real-time PCR primers and probes. Nucleic Acids Res. 2009;37(Database issue):D942–5.

    Article  Google Scholar 

  18. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med (Berl). 2006;84(11):901–10.

    Article  Google Scholar 

  19. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8(2):R19.

    Article  Google Scholar 

  20. Gregory CA, Grady Gunn W, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329(1):77–84.

    Article  Google Scholar 

  21. Hall BK, Miyake T. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int J Dev Biol. 1995;39(6):881–93.

    Google Scholar 

  22. Sakou T. Bone morphogenetic proteins: from basic studies to clinical approaches. Bone. 1998;22(6):591–603.

    Article  Google Scholar 

  23. Wang EA, Israel DI, Kelly S, Luxenberg DP. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors. 1993;9(1):57–71.

    Article  Google Scholar 

  24. Takuwa Y, Ohse C, Wang EA, Wozney JM, Yamashita K. Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3-E1. Biochem Biophys Res Commun. 1991;174(1):96–101.

    Article  Google Scholar 

  25. Gitelman SE, Kirk M, Ye JQ, Filvaroff EH, Kahn AJ, Derynck R. Vgr-1/BMP-6 induces osteoblastic differentiation of pluripotential mesenchymal cells. Cell Growth Differ. 1995;6(7):827–36.

    Google Scholar 

  26. Ricard-Blum S, Bernocco S, Font B, Moali C, Eichenberger D, Farjanel J, et al. Interaction properties of the procollagen C-proteinase enhancer protein shed light on the mechanism of stimulation of BMP-1. J Biol Chem. 2002;277(37):33864–9.

    Article  Google Scholar 

  27. Hulley P, Russell G, Croucher P. Chapter 6—Growth factors. In: Markus JS, Simon PR, John PB, editors. Dynamics of bone and cartilage metabolism. 2nd ed. Burlington: Academic Press; 2006. p. 99–113.

    Chapter  Google Scholar 

  28. Chenu C, Pfeilschifter J, Mundy GR, Roodman GD. Transforming growth factor beta inhibits formation of osteoclast-like cells in long-term human marrow cultures. Proc Natl Acad Sci USA. 1988;85(15):5683–7.

    Article  Google Scholar 

  29. Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006;281(24):16502–11.

    Article  Google Scholar 

  30. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.

    Article  Google Scholar 

  31. Nishimura R, Hata K, Ikeda F, Ichida F, Shimoyama A, Matsubara T, et al. Signal transduction and transcriptional regulation during mesenchymal cell differentiation. J Bone Miner Metab. 2008;26(3):203–12.

    Article  Google Scholar 

  32. Xiao G, Jiang D, Gopalakrishnan R, Franceschi RT. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem. 2002;277(39):36181–7.

    Article  Google Scholar 

  33. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci. 2011;124(Pt 7):991–8.

    Article  Google Scholar 

  34. Franceschi RT, Ge C, Xiao G, Roca H, Jiang D. Transcriptional regulation of osteoblasts. Cells Tissues Organs. 2009;189(1–4):144–52.

    Article  Google Scholar 

  35. Eferl R, Hoebertz A, Schilling AF, Rath M, Karreth F, Kenner L, et al. The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J. 2004;23(14):2789–99.

    Article  Google Scholar 

  36. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339(1):189–95.

    Article  Google Scholar 

  37. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, et al. A twist code determines the onset of osteoblast differentiation. Dev Cell. 2004;6(3):423–35.

    Article  Google Scholar 

  38. Samee N, Geoffroy V, Marty C, Schiltz C, Vieux-Rochas M, Levi G, et al. Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. Am J Pathol. 2008;173(3):773–80. doi:10.2353/ajpath.2008.080243.

    Article  Google Scholar 

  39. Nakamura H, Kenmotsu S, Sakai H, Ozawa H. Localization of CD44, the hyaluronate receptor, on the plasma membrane of osteocytes and osteoclasts in rat tibiae. Cell Tissue Res. 1995;280(2):225–33.

    Google Scholar 

  40. Harada H, Kukita T, Kukita A, Iwamoto Y, Iijima T. Involvement of lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 in osteoclastogenesis: a possible role in direct interaction between osteoclast precursors. Endocrinology. 1998;139(9):3967–75.

    Article  Google Scholar 

  41. Helfrich MH, Horton MA. Chapter 8—Integrins and other adhesion molecules. In: Markus JS, Simon PR, John PB, editors. Dynamics of bone and cartilage metabolism. 2nd ed. Burlington: Academic Press; 2006. p. 129–51.

    Chapter  Google Scholar 

  42. Kawaguchi J, Kii I, Sugiyama Y, Takeshita S, Kudo A. The transition of cadherin expression in osteoblast differentiation from mesenchymal cells: consistent expression of cadherin-11 in osteoblast lineage. J Bone Mineral Res. 2001;16(2):260–9.

    Article  Google Scholar 

  43. Kawaguchi J, Azuma Y, Hoshi K, Kii I, Takeshita S, Ohta T, et al. Targeted disruption of cadherin-11 leads to a reduction in bone density in calvaria and long bone metaphyses. J Bone Mineral Res. 2001;16(7):1265–71.

    Article  Google Scholar 

  44. Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem. 2001;129(1):133–8.

    Article  Google Scholar 

  45. Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002;14(5):608–16.

    Article  Google Scholar 

  46. Rivera-Chacon DM, Alvarado-Velez M, Acevedo-Morantes CY, Singh SP, Gultepe E, Nagesha D, et al. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces. J Biomed Nanotechnol. 2013;9(6):1092–7.

    Article  Google Scholar 

  47. Niyibizi C, Eyre DR. Bone type V collagen: chain composition and location of a trypsin cleavage site. Connect Tissue Res. 1989;20(1–4):247–50.

    Article  Google Scholar 

  48. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102.

    Article  Google Scholar 

  49. Shen J, Hovhannisyan H, Lian JB, Montecino MA, Stein GS, Stein JL, et al. Transcriptional induction of the osteocalcin gene during osteoblast differentiation involves acetylation of histones H3 and H4. Mol Endocrinol. 2003;17(4):743–56.

    Article  Google Scholar 

  50. van Tuyl LH, Voskuyl AE, Boers M, Geusens P, Landewe RB, Dijkmans BA, et al. Baseline RANKL:OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann Rheum Dis. 2010;69(9):1623–8.

    Article  Google Scholar 

  51. Bazzi MD, Youakim MA, Nelsestuen GL. Importance of phosphatidylethanolamine for association of protein kinase C and other cytoplasmic proteins with membranes. Biochemistry. 1992;31(4):1125–34.

    Article  Google Scholar 

  52. Kim HJ, Kim JH, Bae SC, Choi JY, Kim HJ, Ryoo HM. The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2. J Biol Chem. 2003;278(1):319–26.

    Article  Google Scholar 

  53. Boguslawski G, Hale LV, Yu XP, Miles RR, Onyia JE, Santerre RF, et al. Activation of osteocalcin transcription involves interaction of protein kinase A- and protein kinase C-dependent pathways. J Biol Chem. 2000;275(2):999–1006.

    Article  Google Scholar 

  54. Lampasso JD, Marzec N, Margarone J III, Dziak R. Role of protein kinase C alpha in primary human osteoblast proliferation. J Bone Mineral Res. 2002;17(11):1968–76.

    Article  Google Scholar 

  55. Olivares-Navarrete R, Sutha K, Hyzy SL, Hutton DL, Schwartz Z, McDevitt T, et al. Osteogenic differentiation of stem cells alters vitamin D receptor expression. Stem Cells Dev. 2012;21(10):1726–35.

    Article  Google Scholar 

  56. Anderson HC, Reynolds JJ. Pyrophosphate stimulation of calcium uptake into cultured embryonic bones. Fine structure of matrix vesicles and their role in calcification. Dev Biol. 1973;34(2):211–27.

    Article  Google Scholar 

  57. Tenenbaum HC, Palangio K. Phosphoethanolamine- and fructose 1,6-diphosphate-induced calcium uptake in bone formed in vitro. Bone Mineral. 1987;2(3):201–10.

    Google Scholar 

  58. Roberts SJ, Stewart AJ, Sadler PJ, Farquharson C. Human PHOSPHO1 exhibits high specific phosphoethanolamine and phosphocholine phosphatase activities. Biochem J. 2004;382(Pt 1):59–65.

    Google Scholar 

  59. Fedde KN, Whyte MP. Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5′-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am J Hum Genet. 1990;47(5):767–75.

    Google Scholar 

Download references

Acknowledgments

The authors wish to sincerely thank Frank Feyerabend, Lena Frenzel, and Gabriele Salamon from the department of Structural Research on Macromolecules for their generous help in the laboratory. Eckart Hille (Schön-Klinik Eilbek, Hamburg) and Christoph Lindner (Agaplesion Diakonieklinikum, Hamburg) are acknowledged for the supply of the primary cells. Financial support from the Helmholtz Association is gratefully acknowledged.

Conflict of interest

The authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bérengère J. C. Luthringer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure

Gene expression patterns over time: relative normalised expressions. Genes were classified in the following categories (a) apoptosis/survival, (b) growth regulatory factors, (c) transcription factors and MAPK3, (d and e) adhesion and ECM components, (f) TNF superfamily, and (g) mineralisation. Supplementary material 1 (TIFF 276 kb)

Supplementary material 2 (DOC 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luthringer, B.J.C., Katha, U.M.R. & Willumeit, R. Phosphatidylethanolamine biomimetic coating increases mesenchymal stem cell osteoblastogenesis. J Mater Sci: Mater Med 25, 2561–2571 (2014). https://doi.org/10.1007/s10856-014-5263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5263-8

Keywords

Navigation