Skip to main content
Log in

Synergistic improved piezocatalytic performance of surface group functioned and heterovalently doped barium titanate nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In piezoelectric catalysis, the surface-bound charges induced by the piezoelectric effect will affect the effectiveness of piezoelectric catalytic reactions. BaTiO3 nanoparticles in this study were prepared by solvent improved hydrothermal method with surface modified and heterovalent La3+ ion doping, and piezoelectric catalytic activity was evaluated toward dye reactants under ultrasonic vibration. Due to La doping, the quantity of Ba vacancies in BaTiO3 will increase, resulting in a greater response of charge carriers under ultrasonic irradiation. Meanwhile, due to surface modification, carboxyl groups will be applied to the surface of BaTiO3 nanoparticles, resulting in a decrease in particle size with increased specific surface area. The adsorption of carboxyl groups on the surface can also enhance the ability of BaTiO3 nanoparticles to capture organic dyes. Due to the synergistic effect of heterovalent ion doping and surface modification, BaTiO3 nanoparticles achieved a high voltage electrocatalytic reaction rate constant of 0.054 min−1 and a degradation efficiency of > 90% within 40 min under ultrasound conditions of 40 kHz and 100 W. These results indicate that by controlling the precursor and hydrothermal parameters, BaTiO3 nanoparticles were comprehensively modified, resulting in excellent piezoelectric catalytic performance. This study provides a new method for the preparation of chemically functionalized piezoelectric catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. T. Sonam, S. Pooja, P. Diane et al., Biodegradation of organo-metallic pollutants in distillery wastewater employing bioaugmentation process. Environ. Technol. Innov. 23, 101774 (2021)

    Article  Google Scholar 

  2. S.K. Alharbi, M. Shafiquzzaman, H. Haider et al., Treatment of ablution greywater for recycling by alum coagulation and activated carbon adsorption. Arab. J. Sci. Eng. 44, 8389–8399 (2019)

    Article  CAS  Google Scholar 

  3. X. Liangpang, W. Po Keung, J. Zhifeng et al., Iodide-mediated selective photocatalytic treatment of phenolic pollutants. Appl. Catal. B 338, 123080 (2023)

    Article  Google Scholar 

  4. H. Gu, W. Xie, A. Du et al., Overview of electrocatalytic treatment of antibiotic pollutants in wastewater. Catal. Rev. Sci. Eng. 65, 569–619 (2021)

    Article  Google Scholar 

  5. W. Sufei, L. Yang, L. Qing et al., Photo-/electro-/piezo-catalytic elimination of environmental pollutants. J. Photochem. Photobiol. A 437, 114435 (2022)

    Google Scholar 

  6. G. Yang, Q. Chen, W. Wang et al., Cocatalyst engineering in piezocatalysis: a promising strategy for boosting hydrogen evolution. ACS Appl. Mater. Interfaces 13(13), 15305–15314 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Zhou, Z. Li, C. Hao et al., Electrocatalysis enhancement of α, β-PbO2 nanocrystals induced via rare earth Er(III) doping strategy: principle, degradation application and electrocatalytic mechanism. Electrochim. Acta 333(10), 135535 (2019)

    Google Scholar 

  8. T.M. Khedr, K. Wang, D. Kowalski et al., Bi2WO6-based Z-scheme photocatalysts: principles, mechanisms and photocatalytic applications. J. Environ. Chem. Eng. 10(3), 107838 (2022)

    Article  CAS  Google Scholar 

  9. X. Chen, L. Liu, Y. Feng et al., Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam. Mater. Today 20(9), 501–506 (2017)

    Article  CAS  Google Scholar 

  10. H. Jiamian, D.M. Neil, Advances in ferroelectric and multiferroic materials. Adv. Electron. Mater. 8(6), 2200541 (2022)

    Article  Google Scholar 

  11. Z.L. Wang, Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 1(9), 1388–1393 (2010)

    Article  CAS  Google Scholar 

  12. K. Jenkins, V. Nguyen, R. Zhu et al., Piezotronic effect: an emerging mechanism for sensing applications. Sensors 15(9), 22914–22940 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Tu, Y. Guo, Y. Zhang et al., Piezocatalysis and piezo-photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application. Adv. Func. Mater. 30(48), 2005158 (2020)

    Article  CAS  Google Scholar 

  14. A. Zhang, Z. Liu, B. Xie et al., Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: an efficient phase boundary catalyst. Appl. Catal. B 279(15), 119353 (2020)

    Article  CAS  Google Scholar 

  15. Z. Kailai, S. Xiaodong, W. Haitang et al., Interfacial engineering of Bi2MoO6-BaTiO3 type-I heterojunction promotes cocatalyst-free piezocatalytic H2 production. Nano Energy 121, 109206 (2023)

    Google Scholar 

  16. Z. Yuanyi, D. Haojie, X. Zhaofen et al., Carbon modification facilitates piezocatalytic H2O2 production over BiOCl nanosheets: correlation between piezoresponse and surface reaction. Appl. Catal. B 343, 123504 (2023)

    Google Scholar 

  17. R. Mahasen, S.I. El-Dek, M.M. Arman, Improvement of ferroelectric properties via Zr doping in barium titanate nanoparticles. J. Mater. Sci. 33, 16753–16776 (2022)

    Google Scholar 

  18. H. Jin, C. Livache, W.D. Kim et al., Spin-exchange carrier multiplication in manganese-doped colloidal quantum dots. Nat. Mater. 22, 1013–1021 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Tongfei, R. Pengrong, Q. Xiangcheng et al., Enhanced piezoelectric catalytic properties of NaNbO3 powder by defects engineering. Appl. Surf. Sci. 628, 157363 (2023)

    Article  Google Scholar 

  20. Y. Zhang, T. Sun, P. Zhang et al., Synthesizing MOF-derived NiNC catalyst via surfactant modified strategy for efficient electrocatalytic CO2 to CO. J. Colloid Interface Sci. 631, 96–101 (2022)

    Article  PubMed  Google Scholar 

  21. M.B. Starr, X. Wang, Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Sci. Rep. 3, 2160 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  22. R. Maex, On the Nernst-Planck equation. J. Integr. Neurosci. 16(1), 73–91 (2017)

    Article  PubMed  Google Scholar 

  23. J. Li, C. Cai, Z.-H. Li, Knudsen diffusion differs from Fickian diffusion. Phys. Fluids 33(4), 42009 (2021)

    Article  CAS  Google Scholar 

  24. J.G. Wissink, H. Herlina, Y. Akar et al., Effect of surface contamination on interfacial mass transfer rate. J. Fluid Mech. 830(10), 5–34 (2017)

    Article  CAS  Google Scholar 

  25. Š Trafela, S. Šturm, R.K. Žužek, Surface modification for the enhanced electrocatalytic HCHO oxidation performance of Ni-thin-film-based catalysts. Appl. Surf. Sci. 537(30), 147822 (2021)

    Article  CAS  Google Scholar 

  26. Q. Lenne, Y.R. Leroux, C. Lagrost, Surface modification for promoting durable, efficient, and selective electrocatalysts. ChemElectroChem 7(11), 2345–2363 (2020)

    Article  CAS  Google Scholar 

  27. T. Chen-Yang, L. Wei-Wei, L. Xiao-Wei et al., Hydrophobic organic–Inorganic hybrid surface modification-Induced uniform zinc deposition and prohibited side reactions toward a ultra-stable zinc Anode. ACS Sustain. Chem. Eng. 11(9), 3576–3584 (2023)

    Article  Google Scholar 

  28. M. Anshu, S. Surbhi, K. Parveen et al., Structural, dielectric, ferroelectric and piezoelectric properties of La and Fe substituted barium titanate ceramics. Phase Trans. 95(7), 515–522 (2022)

    Article  Google Scholar 

  29. C. Yu, J. He, M. Tan et al., Selective enhancement of photo-Piezocatalytic performance in BaTiO3 via heterovalent ion doping. Adv. Func. Mater. 32(52), 2209365 (2022)

    Article  CAS  Google Scholar 

  30. Z. Yu, L. Yezhan, L. Ruofan et al., Enhanced piezo-catalytic H2O2 production over Bi0.5Na0.5TiO3 via piezoelectricity enhancement and surface engineering. Chem. Eng. J. 465(1), 143043 (2023)

    Google Scholar 

  31. S. Gao, H. Xing, J. Zhang et al., Oxalic acid functionalization of BaTiO3 nanobelts for promoting their piezo-degradation organic contaminants. J. Materiomics 7(6), 1275–1283 (2021)

    Article  Google Scholar 

  32. U.-Y. Hwang, H.-S. Park, K.-K. Koo, Low-temperature synthesis of fully crystallized spherical BaTiO3 particles by the gel-sol method. J. Am. Ceram. Soc. 87(12), 2168–2174 (2004)

    Article  CAS  Google Scholar 

  33. Z.-M. Wang, K. Zhao, X.-L. Guo et al., Crystallization, phase evolution and ferroelectric properties of sol–gel-synthesized Ba(Ti0.8Zr0.2)O3–x(Ba0.7Ca0.3)TiO3 thin films. J. Mater. Chem. C 1, 522–530 (2013)

    Article  CAS  Google Scholar 

  34. X. Chen, X. Wang, D. Fang, A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes Nanotubes Carbon Nanostruct. 28(12), 1048–1058 (2020)

    Article  CAS  Google Scholar 

  35. M. Wegmann, L. Watson, A. Hendry, XPS analysis of submicrometer barium titanate powder. J. Am. Ceram. Soc. 87(3), 371–377 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2023YFB3812200) and Guangdong Basic and Applied Basic Research Foundation (No. 2022B1515120041).

Funding

Funding was provided by Guangdong Basic and Applied Basic Research Foundation (Grant no. 2022B1515120041).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design Material preparation, data collection and analysis were performed by Ye Fu and Yiren Liu. The first draft of the manuscript was written by Ye Fu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hua Hao.

Ethics declarations

Conflict of interest

The authors declared no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Hao, H., Liu, Y. et al. Synergistic improved piezocatalytic performance of surface group functioned and heterovalently doped barium titanate nanoparticles. J Mater Sci: Mater Electron 35, 894 (2024). https://doi.org/10.1007/s10854-024-12668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12668-4

Navigation