Skip to main content
Log in

A facile strategy to achieve necklace like Co/CoO/CNTs nano-composites for enhanced electromagnetic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To achieve high electromagnetic microwave absorbing properties, an effective method is to optimize the structural design and composite composition. In this study, we successfully prepared three-dimensional necklace-like composites of Co/CoO/CNTs through solvothermal and hydrogen reduction. The properties were controlled by adjusting the hydrogen reduction time. The results show that the hydrogen reduction time determines the chemical composition (CoO, fcc Co, hcp Co, and CNTs) of the composite material. Specifically, with an increase in hydrogen reduction time, the content of fcc Co and hcp Co increases, with a greater increase in the content of fcc Co compared to hcp Co in cobalt. This subsequently impacts the magnetic properties and electromagnetic parameters of the composite material. As anticipated, the excellent absorbing properties of the composite material are achieved after we use hydrogen reduction for 2 h. At a thickness of 2.69 mm, the RLmin reaches -57.6 dB, with an EABD of 5.4 GHz (12.6–18 GHz) at a thickness of 1.55 mm. Such good performance is inextricably linked to the synergistic effect of the 3D crosslinked conductive network, heterogeneous structure, conduction loss, dielectric loss and magnetic loss in the material, providing multiple loss mechanisms for better impedance matching and reflection loss. The simulated RL results of the composites agree with the experimental values at different thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors do not have permission to share data.

References

  1. X. He, J. Zhou, J. Tao, Y. Liu, B. Wei, Z. Yao, Preparation of porous CoNi/N-doped carbon microspheres based on magnetoelectric coupling strategy: a new choice against electromagnetic pollution. J. Colloid Interface Sci. 626, 123–135 (2022). https://doi.org/10.1016/j.jcis.2022.06.153

    Article  CAS  PubMed  Google Scholar 

  2. Y.Y. Wang, W.J. Sun, K. Dai, D.X. Yan, Z.M. Li, Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading. J. Mater. Sci. Technol. 102, 115–122 (2022). https://doi.org/10.1016/j.jmst.2021.06.032

    Article  CAS  Google Scholar 

  3. K. Zhang, X. Chen, X. Gao, L. Chen, S. Ma, Preparation and microwave absorption properties of carbon nanotubes/iron oxide/polypyrrole/carbon composites. Synth. Met. 260, 116282 (2020). https://doi.org/10.1016/j.synthmet.2019.116282

    Article  CAS  Google Scholar 

  4. X. Cai, H. Guo, H. Zhu, D. Yin, H. Guo, D. Bi, Effect of cooling medium on the preparation and microwave absorption properties in low frequency for LiZn ferrites hollow microspheres. J. Colloid Interface Sci. 906, 164290 (2022). https://doi.org/10.1016/j.jallcom.2022.164290

    Article  CAS  Google Scholar 

  5. L.L. Adebayo, H. Soleimani, N. Yahya, Z. Abbas, F.A. Wahaab, R.T. Ayinla, H. Ali, Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceram. Int. 46(2), 1249–1268 (2022). https://doi.org/10.1016/j.ceramint.2019.09.209

    Article  CAS  Google Scholar 

  6. Y. Zhang, X. Zhang, B. Quan, G. Ji, X. Liang, W. Liu, Y. Du, A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption. Nanotechnology 28(11), 115704 (2017). https://doi.org/10.1088/1361-6528/aa5d6f

    Article  CAS  PubMed  Google Scholar 

  7. Y.F. Wang, L. Zhu, L. Han, X.H. Zhou, Y. Gao, L.H. Lv, Recent progress of one-dimensional nanomaterials for microwave absorption: a review. ACS Appl. Nano Mater. 6(9), 7107–7122 (2023). https://doi.org/10.1021/acsanm.3c00818

    Article  CAS  Google Scholar 

  8. D. Zhang, F. Xu, J. Lin, Z. Yang, M. Zhang, Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18 GHz frequency range. Carbon 80, 103–111 (2014). https://doi.org/10.1016/j.carbon.2014.08.044

    Article  CAS  Google Scholar 

  9. D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li, X. Guo, G. Wu, Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023). https://doi.org/10.1016/j.jcis.2023.08.019

    Article  CAS  PubMed  Google Scholar 

  10. A. Ling, G. Tan, Q. Man, Y. Lou, S. Chen, X. Gu, X. Liu, Broadband microwave absorbing materials based on MWCNTs’ electromagnetic wave filtering effect. Compos. B 171, 214–221 (2019). https://doi.org/10.1016/j.compositesb.2019.04.034

    Article  CAS  Google Scholar 

  11. Q. Yang, L. Liu, D. Hui, M. Chipara, Microstructure, electrical conductivity and microwave absorption properties of γ-FeNi decorated carbon nanotube composites. Compos. B 87, 256–262 (2016). https://doi.org/10.1016/j.compositesb.2015.09.056

    Article  CAS  Google Scholar 

  12. A. El Moumen, M. Tarfaoui, M. Nachtane, K. Lafdi, Carbon nanotubes as a player to improve mechanical shock wave absorption. Compos. B 164, 67–71 (2019). https://doi.org/10.1016/j.compositesb.2018.11.072

    Article  CAS  Google Scholar 

  13. Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang, L. Liu, W. Lu, Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014

    Article  CAS  Google Scholar 

  14. L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, S. Matitsine, Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58(4), 203–259 (2013). https://doi.org/10.1179/1743280412Y.0000000011

    Article  CAS  Google Scholar 

  15. X. Zhang, J. Xu, H. Yuan, S. Zhang, Q. Ouyang, C. Zhu, Y. Chen, Large-scale synthesis of th-ree-dimensional reduced graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials. ACS Appl. Mater. Interfaces 11(42), 39100–39108 (2019). https://doi.org/10.1021/acsami.9b13751

    Article  CAS  PubMed  Google Scholar 

  16. Z. Ye, K. Wang, X. Li, J. Yang, Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials. J. Colloid Interface Sci. 893, 162396 (2022). https://doi.org/10.1016/j.jallcom.2021.162396

    Article  CAS  Google Scholar 

  17. B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. Phys. Chem. 17(14), 8802–8810 (2015). https://doi.org/10.1039/C4CP05632A

    Article  CAS  Google Scholar 

  18. W. Li, Y. Wang, X.Y. Cui, S. Yu, Y. Li, Y. Hu, S. Ringer, Crystal Facet Effects on Nanomag-netism of Co3O4. ACS Appl. Mater. Interfaces 10(22), 19235–19247 (2018). https://doi.org/10.1021/acsami.8b03934

    Article  CAS  PubMed  Google Scholar 

  19. Y. Luo, P. Yin, G. Wu, L. Zhang, G. Ma, J. Wang, G. Bu, Porous carbon sphere decorated with Co/Ni nanoparticles for strong and broadband electromagnetic dissipation. Carbon 197, 389–399 (2022). https://doi.org/10.1016/j.carbon.2022.06.084

    Article  CAS  Google Scholar 

  20. K. Cao, X. Yang, Y. Zhang, J. Wen, J. Chen, X. Hou, W. Xue, Preparation of magnetic three-dimensional porous Co-rGO aerogel for enhanced microwave absorption. Carbon 208, 111–122 (2023). https://doi.org/10.1016/j.carbon.2023.03.037

    Article  CAS  Google Scholar 

  21. C. Sun, Q. Li, Z. Jia, G. Wu, P. Yin, Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption. Chem. Eng. J. 454, 140277 (2023). https://doi.org/10.1016/j.cej.2022.140277

    Article  CAS  Google Scholar 

  22. T. Liu, P.H. Zhou, J.L. Xie, L.J. Deng, Electromagnetic and absorption properties of urchinlik-e Ni composites at microwave frequencies. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4709727

    Article  PubMed  PubMed Central  Google Scholar 

  23. Y. Shu, T. Zhao, W. Jia, L. Yang, X. Li, G. Feng, F. Luo, A crosslinked coral-like Co@CoO/RGO nanohybrid structure with good electromagnetic wave absorption performance. J. Colloid Interface Sci. 642, 393–407 (2023). https://doi.org/10.1016/j.jcis.2023.03.183

    Article  CAS  PubMed  Google Scholar 

  24. D. Lan, H. Zhou, H. Wu, A polymer sponge with dual absorption of mechanical and electrom-agnetic energy. J. Colloid Interface Sci. 633, 92–101 (2023). https://doi.org/10.1016/j.materresbull.2023.112630

    Article  CAS  PubMed  Google Scholar 

  25. Y.L. Wang, P.Y. Zhao, B.L. Liang, K. Chen, G.S. Wang, Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon 202, 66–75 (2023). https://doi.org/10.1016/j.carbon.2022.10.043

    Article  CAS  Google Scholar 

  26. A.I. Rabee, C.B. Gaid, G.A. Mekhemer, M.I. Zaki, Combined TPR, XRD, and FTIR studies on the reduction behavior of Co3O4. Mater. Chem. Phys. 289, 126367 (2022). https://doi.org/10.1016/j.matchemphys.2022.126367

    Article  CAS  Google Scholar 

  27. C. Nguyen-Huy, J. Lee, J.H. Seo, E. Yang, J. Lee, K. Choi, H. Lee, J.H. Kim, M.S. Lee, K.S.H. Joo, Structure-dependent catalytic properties of mesoporous cobalt oxides in furfural hy-drogenation. Appl. Catal. A 583, 117125 (2019). https://doi.org/10.1016/j.apcata.2019.117125

    Article  CAS  Google Scholar 

  28. D. Xu, Y. Ren, X. Guo, D. Feng, R. Yang, B. Zhao, R. Zhang, Multiscale core-shell CoO@Co euro PGN/CNTs composites aerogels for ultra-wide microwave absorption. Compos. Sci. Technol. 225, 109524 (2022). https://doi.org/10.1016/j.compscitech.2022.109524

    Article  CAS  Google Scholar 

  29. F. Wu, Z. Liu, J. Wang, T. Shah, P. Liu, Q. Zhang, B. Zhang, Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its micr-owave absorbing properties. Chem. Eng. J. 422, 130591 (2021). https://doi.org/10.1016/j.cej.2021.130591

    Article  CAS  Google Scholar 

  30. J. Qiu, Z. Xin, M. Zhang, X. Sun, Facile synthesis of yolk-shell pompon-like Fe@void@CeO2@Ni nanospheres with enhanced microwave absorption properties. Appl. Surf. Sci. 613, 155873 (2023). https://doi.org/10.1016/j.apsusc.2022.155873

    Article  CAS  Google Scholar 

  31. M. Qiao, J. Wang, D. Wei, J. Li, X. Lei, W. Lei, Q. Zhang, Influence of crystalline phase evol-ution of shells on microwave absorption performance of core-shell Fe3O4@TiO2 nanochains. Mater. Today Nano 18, 100203 (2022). https://doi.org/10.1016/j.mtnano.2022.100203

    Article  CAS  Google Scholar 

  32. G. Guan, G. Gao, J. Xiang, J. Yang, L. Gong, X. Chen, X. Meng, CoFe2/BaTiO3 hybrid nanof-ibers for microwave absorption. ACS Appl. Nano Mater. 3(8), 8424–8437 (2022). https://doi.org/10.1021/acsanm.0c01855

    Article  CAS  Google Scholar 

  33. H. Liang, S. Hui, G. Chen, H. Shen, J. Yun, L. Zhang, W. Lu, H. Wu, Discovery of deactivation phenomenon in NiCo2S4/NiS2 electromagnetic wave absorbent and its re-activation mechanism. Small Methods (2024). https://doi.org/10.1002/smtd.202301600

    Article  PubMed  Google Scholar 

  34. Y. Cui, K. Yang, J. Wang, T. Shah, Q. Zhang, B. Zhang, Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 172, 1–14 (2021). https://doi.org/10.1016/j.carbon.2020.09.093

    Article  CAS  Google Scholar 

  35. C. Cui, R. Guo, E. Ren, H. Xiao, M. Zhou, X. Lai, W. Qin, MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 405, 126626 (2021). https://doi.org/10.1016/j.cej.2019.122615

    Article  CAS  Google Scholar 

  36. C. Wang, Y. Wang, H. Jiang, H. Tan, D. Liu, Continuous in-situ growth of carbon nanotubes on carbon fibers at various temperatures for efficient electromagnetic wave absorption. Carbon 200, 94–107 (2022). https://doi.org/10.1016/j.carbon.2022.08.053

    Article  CAS  Google Scholar 

  37. M. Qiao, D. Wei, X. He, X. Lei, J. Wei, Q. Zhang, Novel yolk–shell Fe3O4@void@SiO2@PPy nanochains toward microwave absorption application. J. Mater. Sci. 6, 1312–1327 (2021). https://doi.org/10.1007/s10853-020-05313-y

    Article  CAS  Google Scholar 

  38. M. Sun, C. Xu, J. Li, Protonic doping brings tuneable dielectric and electromagnetic attenuate-d properties for polypyrrole nanofibers. Chem. Eng. J. 381, 122615 (2020). https://doi.org/10.1016/j.cej.2019.122615

    Article  CAS  Google Scholar 

  39. D. Lan, H. Li, M. Wang, Y. Ren, J. Zhang, M. Wang, Recent advances in constr-uction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater. Res. Bull. (2023). https://doi.org/10.1016/j.materresbull.2023.112630

    Article  Google Scholar 

  40. X. Liu, Y. Chen, X. Cui, M. Zeng, R. Yu, G.S. Wang, Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 3(23), 12197–12204 (2015). https://doi.org/10.1039/c5ta01924a

    Article  CAS  Google Scholar 

  41. P. Li, Y. Zhao, Y. Zhao, J. Yan, H. Zhao, W. Zhao, Z. Zhang, Trimetallic PRUSSIAN blue analo-gue derived FeCo/FeCoNi@NPC composites for highly efficient microwave absorption. Com-posites, Part B 246, 110268 (2022). https://doi.org/10.1016/j.compositesb.2022.110268

    Article  CAS  Google Scholar 

  42. X. Xu, F. Ran, Z. Fan, Z. Cheng, Z. Xie, T. Lv, Y. Liu, Microstructural engineering of flexible and broadband microwave absorption films with hierarchical superstructures derived from bi-metallic metal-organic framework. Carbon 178, 320–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.104

    Article  CAS  Google Scholar 

  43. W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, Y. Du, Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent li-ghtweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117

    Article  CAS  Google Scholar 

  44. Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, X. Zheng, Solvothermal synthesis of nitrogend-oped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493–502 (2017). https://doi.org/10.1016/j.carbon.2017.01.036

    Article  CAS  Google Scholar 

  45. P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, J. Luo, Core–shell CoNi@graphitic carbon dec-orated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11(28), 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525

    Article  CAS  PubMed  Google Scholar 

  46. J. Cheng, B. Liu, Y. Wang, H. Zhao, Y. Wang, Growing CoNi nanoalloy@N-doped carbon n-anotubes on MXene sheets for excellent microwave absorption. J. Mater. Sci. Technol. 130, 157–165 (2022). https://doi.org/10.1016/j.jmst.2022.05.013

    Article  CAS  Google Scholar 

  47. Y. Ma, C. Wang, Z. Qin, G. Chen, L. Xia, B. Zhong, Preparation of cauliflower shaped hp-Co/GNs composite microwave absorbing materials. Mater Charact 189, 111907 (2022). https://doi.org/10.1016/j.matchar.2022.111907

    Article  CAS  Google Scholar 

  48. H.Y. Wang, X.B. Sun, Y. Xin, S.H. Yang, P.F. Hu, G.S. Wang, Ultrathin self-assembly MXe-ne/Co-based bimetallic oxide heterostructures as superior and modulated microwave absorber. J. Mater. Sci. Technol. 134, 132–141 (2023). https://doi.org/10.1016/j.jmst.2022.05.061

    Article  CAS  Google Scholar 

  49. W. Jing Xiao, Y. Jianfeng, Y. Jun, Z. Hui, An Ni–Co bimetallic MOF-derived hierarchical CN-T/CoO/Ni2O3 composite for electromagnetic wave absorption. J. Alloys Compd. 876, 160126 (2021). https://doi.org/10.1016/j.jallcom.2021.160126

    Article  CAS  Google Scholar 

  50. M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang, L. Liang, Y. Li, Dramatically enhanced elect-romagnetic wave absorption of hierarchical CNT/Co/C fiber de-rived from cotton and metal-organic-framework. Carbon 161, 517–527 (2023). https://doi.org/10.1016/j.carbon.2020.01.073

    Article  CAS  Google Scholar 

  51. H. Liang, G. Chen, D. Liu, Z. Li, S. Hui, J. Yun, H. Wu, Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 33(7), 2212604 (2023). https://doi.org/10.1002/adfm.202212604

    Article  CAS  Google Scholar 

  52. X. Chen, Z. Wang, M. Zhou, Y. Zhao, S. Tang, G. Ji, Multilevel structure carbon aerogels with 99.999% electromagnetic wave absorptivity at 1.8 mm and efficient thermal stealth. Chem. Eng. J. 452, 139110 (2023). https://doi.org/10.1016/j.cej.2022.139110

    Article  CAS  Google Scholar 

  53. M. Qin, L. Zhang, X. Zhao, H. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 31(30), 2103436 (2021). https://doi.org/10.1002/adfm.202103436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jialuo Gong: Investigation, Data curation, Writing-original draft, Writing-review & editing. Jiahang Qiu: Data curation, Formal analysis, Writing-review & editing. Mu Zhang: Methodology, Supervision, Validation, Project administration. Xudong Sun: Methodology, Supervision, Writing-review & editing.

Corresponding authors

Correspondence to Mu Zhang or Xudong Sun.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 560 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Qiu, J., Zhang, M. et al. A facile strategy to achieve necklace like Co/CoO/CNTs nano-composites for enhanced electromagnetic performance. J Mater Sci: Mater Electron 35, 701 (2024). https://doi.org/10.1007/s10854-024-12425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12425-7

Navigation