Skip to main content
Log in

The effect of Jahn–Teller distortion on the magnetic and magnetocaloric effect in La-doped gadolinium barium manganite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Disorder in the mixed valence perovskites Gd0.7-xLaxBa0.3MnO3 (where x = 0, 0.1, 0.2, and 0.4) was observed due to the chemical inhomogeneity resulting to the Jahn–Teller (JT) distortions, which is primarily attributed to the differences in cationic size and the ratio between JT active and non-JT active ions. Magnetocaloric effect of Gd0.7Ba0.3MnO3 remains unexplored. The completely different electronic structure of La3+, if it is substituted for Gd3+ can lead to interesting results. The powder x-ray diffraction (P-XRD) and Rietveld refinement analysis showed the effect of La3+ doping in Gd3+ sites on distortion caused by electron density imbalance. The JT parameter (σJT) shows the change in the JT distortion due to La doping is initially diminished by increases as a function of increase in La doping. Surface morphology of samples was analyzed and particles size around 1–2 µm was measured with no agglomeration. Elemental mappaing and elemental composition from the energy dispersive x-ray spectroscopy (EDX) confirm the stoichiometry and homogenity of the synthesized samples. X-ray photoelectron spectroscopy (XPS) authenticates the mixed oxidatation states, which is futher corrobated with the bond valance calculation. As a result, double exchange interaction in the system is enhanced and have a greater influence on the magnetocaloric effect in addition to Griffiths phase of the perovskite structure in all the samples which can be identified from the temperature vs inverse susceptibility graphs. From the results we can see that the Neel temperature increases as a function of σJT. The change in the magnetic entropy of Gd0.7-xLaxBa0.3MnO3 (x = 0, 0.1, 0.2, and 0.4) was observed as negative (− ΔSM = 0.7, 0.35, 0.65, and 0.8 J/kg K) and magnetic phase transition moved towards room temperature that is favourable for magnetic refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Zhang, B. Zhang, S. Li, J. Zhu, B. Wu, J. Wang, Z. Ren, Ceram. Int. 47, 18205 (2021)

    Article  CAS  Google Scholar 

  2. B. Kurniawan, S. Winarsih, C. Kurniawan, M.R. Ramadhan, F. Ruli, AIP Conf. Proc. 1862, 5 (2017)

    Google Scholar 

  3. B. Kurniawan, S. Winarsih, A. Imaduddin, A. Manaf, Physica B Condens Matter. 532, 161 (2018)

    Article  CAS  Google Scholar 

  4. A.E.M.A. Mohamed, V. Vega, M. Ipatov, A.M. Ahmed, B. Hernando, J. Alloys Compd. 665, 394 (2016)

    Article  CAS  Google Scholar 

  5. O. Hassayoun, M. Baazaoui, M.R. Laouyenne, F. Hosni, E.K. Hlil, M. Oumezzine, K. Farah, J. Phys. Chem. Solids 135, 109058 (2019)

    Article  CAS  Google Scholar 

  6. V.B. Naik, S.K. Barik, R. Mahendiran, B. Raveau, Appl. Phys. Lett. 98, 2009 (2011)

    Article  Google Scholar 

  7. S.V. Trukhanov, V.A. Khomchenko, D.V. Karpinsky, M.V. Silibin, A.V. Trukhanov, L.S. Lobanovsky, H. Szymczak, C.E. Botez, I.O. Troyanchuk, J. Rare Earths 37, 1242 (2019)

    Article  CAS  Google Scholar 

  8. W. Xia, Z. Pei, K. Leng, X. Zhu, Nanoscale Res. Lett. (2020). https://doi.org/10.1186/s11671-019-3243-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Y. Zhang, X. Xu, AIP Adv. (2020). https://doi.org/10.1063/5.0002448

    Article  PubMed  PubMed Central  Google Scholar 

  10. L. Su, X.Q. Zhang, Q.Y. Dong, H.T. Yang, S.H. Li, Z.H. Cheng, Ceram. Int. 47, 18286 (2021)

    Article  CAS  Google Scholar 

  11. S. Samantaray, D.K. Mishra, S.K. Pradhan, P. Mishra, B.R. Sekhar, D. Behera, P.P. Rout, S.K. Das, D.R. Sahu, B.K. Roul, J. Magn. Magn. Mater. 339, 168 (2013)

    Article  CAS  Google Scholar 

  12. Y. Zhang, G. Wilde, IEEE Trans. Magn. 51, 36 (2015)

    CAS  Google Scholar 

  13. P.J. Von Ranke, N.A. De Oliveira, S. Gama, Phys. Lett. Sect. A: General Atomic Solid State Phys. 320, 302 (2004)

    Article  Google Scholar 

  14. L. Li, Y. Yuan, Y. Zhang, T. Namiki, K. Nishimura, R. Pöttgen, S. Zhou, Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4932058

    Article  PubMed  PubMed Central  Google Scholar 

  15. N. Formed, G. Si, G. Phase, B. Podmiljˇ, P.J. Mcguiness, N. Mattern, H. Ehrenberg, S. Kobe, IEEE Trans. Magn. 45, 4364 (2009)

    Article  Google Scholar 

  16. X.L. Wang, D. Li, T.Y. Cui, P. Kharel, W. Liu, Z.D. Zhang, J. Appl. Phys. 107, 766 (2010)

    Google Scholar 

  17. R. Sarkar, B. Sarkar, S. Pal, Bull. Mater. Sci. 43, 2 (2020)

    Article  Google Scholar 

  18. A. Nandy, A. Roychowdhury, T. Kar, D. Das, S.K. Pradhan, RSC Adv. 6, 20609 (2016)

    Article  CAS  Google Scholar 

  19. S.G. Min, K.S. Kim, S.C. Yu, H.S. Suh, S. W. Lee 41, 2760 (2005)

    CAS  Google Scholar 

  20. L. Vedmid, O. Fedorova, S. Uporov, E. Sterkhov, J. Supercond. Nov. Magn. 35, 1141 (2022)

    Article  CAS  Google Scholar 

  21. R. Mahesh, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao, J. Solid State Chem. 120, 204 (1995)

    Article  CAS  Google Scholar 

  22. M. Balli, B. Roberge, P. Fournier, S. Jandl, Crystals (Basel) 7, 1 (2017)

    Google Scholar 

  23. A.K. Kundu, P. Nordblad, C.N.R. Rao, J. Phys. Condens. Matter 18, 4809 (2006)

    Article  CAS  Google Scholar 

  24. R. Kou, J. Gao, Z. Nie, Y. Wang, D.E. Brown, Y. Ren, J. Alloys Compd. 826, 154117 (2020)

    Article  CAS  Google Scholar 

  25. B. Vijaya Kumar, R. Velchuri, V. Rama Devi, B. Sreedhar, G. Prasad, D. Jaya Prakash, M. Kanagaraj, S. Arumugam, M. Vithal, J. Solid State Chem. 184, 264 (2011)

    Article  Google Scholar 

  26. K. Sakthipandi, V. Rajendran, Mater. Chem. Phys. 138, 581 (2013)

    Article  CAS  Google Scholar 

  27. S. Sankarrajan, K. Sakthipandi, P. Manivasakan, K. Thyagarajan, V. Rajendran, Phase Trans. 84, 657 (2011)

    Article  CAS  Google Scholar 

  28. Z. Chen, T.A. Tyson, K.H. Ahn, Z. Zhong, J. Hu, J. Magn. Magn. Mater. 322, 3049 (2010)

    Article  CAS  Google Scholar 

  29. M.W. Shaikh, I. Mansuri, M.A. Dar, D. Varshney, Mater. Sci. Semicond. Process. 35, 10 (2015)

    Article  CAS  Google Scholar 

  30. L.A. Burrola-Gándara, R.J. Sáenz-Hernández, C.R. Santillán-Rodríguez, D. Lardizabal-Gutiérrez, P. Pizáruiz, J.T. Elizalde Galindo, J.A. Matutes-Aquino, AIP Adv. 6, 6 (2016)

    Article  Google Scholar 

  31. K. Sakthipandi, V. Rajendran, T. Jayakumar, Mater. Res. Bull. 48, 1651 (2013)

    Article  CAS  Google Scholar 

  32. K. Sakthipandi, V. Rajendran, Mater Charact 77, 70 (2013)

    Article  CAS  Google Scholar 

  33. A. Fishman, N. Tkachev, Defect Diffusion Forum 334–335, 353 (2013)

    Article  Google Scholar 

  34. L.N. Lau, K.P. Lim, A.N. Ishak, M.M.A. Kechik, S.K. Chen, N.B. Ibrahim, M. Miryala, M. Murakami, A.H. Shaari, Coatings (2021). https://doi.org/10.3390/coatings11070835

    Article  Google Scholar 

  35. H.A. Martinez-Rodriguez, M.H. Bocanegra-Bernal, V. Orozco-Carmona, G. Herrera-Pérez, J.A. Matutes-Aquino, J.F. Jurado, J.A. Duarte-Moller, A. Reyes-Rojas, Mater. Res. Exp. (2019). https://doi.org/10.1088/2053-1591/ab3027

    Article  Google Scholar 

  36. S. Chatterjee, K. Das, I. Das, Phys. Chem. Chem. Phys. 24, 8233 (2022)

    Article  CAS  PubMed  Google Scholar 

  37. S. Kiliç Çetin, G. Akça, M.S. Aslan, A. Ekicibil, Adiyaman Univ. J. Sci. 12, 142 (2022)

    Google Scholar 

  38. T.A. Ho, H.N. Nguyen, T.D. Pham, VNU J. Sci.: Math. Phys. (2020). https://doi.org/10.25073/2588-1124/vnumap.4403

    Article  Google Scholar 

  39. J. Makni-Chakroun, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, J. Alloys Compd. 650, 421 (2015)

    Article  CAS  Google Scholar 

  40. S. Ghorai, S.A. Ivanov, R. Skini, P. Svedlindh, J. Phys. Condens. Matter 33, 145801 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. A. Kumar, J.W. Kim, N. Yadav, A. Vij, S. Kumar, M.K. Sharma, K. Kumari, S.H. Huh, B.H. Koo, Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2023.127695

    Article  Google Scholar 

  42. N. Ullah, M. Imran, K. Liang, C.Z. Yuan, A. Zeb, N. Jiang, U.Y. Qazi, S. Sahar, A.W. Xu, Nanoscale 9, 13800 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. H. Bantawal, D.K. Bhat, Int. J. Eng. Technol. (UAE) 7, 105 (2018)

    CAS  Google Scholar 

  44. D. Çoban Özkan, A. Türk, E. Celik, J. Mater. Sci. Mater. Electron. 32(11), 15544–15562 (2021)

    Article  Google Scholar 

  45. R. Das, A. Jaiswal, S. Adyanthaya, P. Poddar, J. Phys. Chem. C 114, 12104 (2010)

    Article  CAS  Google Scholar 

  46. S. Chatterjee, S. Giri, S. Majumdar, P. Dutta, P. Singha, A. Banerjee, J. Phys. Condens. Matter (2022). https://doi.org/10.1088/1361-648X/ac6e1f

    Article  PubMed  Google Scholar 

  47. W.J. Lu, X. Luo, C.Y. Hao, W.H. Song, Y.P. Sun, J. Appl. Phys. 104, 113908 (2008)

    Article  Google Scholar 

  48. P.T. Phong, L.T.T. Ngan, L.V. Bau, N.X. Phuc, P.H. Nam, L.T.H. Phong, N.V. Dang, I.J. Lee, J. Magn. Magn. Mater. 475, 374 (2019)

    Article  CAS  Google Scholar 

  49. B. Uthaman, P. Manju, S. Thomas, D. Jaiswal Nagar, K.G. Suresh, M.R. Varma, Phys. Chem. Chem. Phys. 19, 12282 (2017)

    Article  CAS  PubMed  Google Scholar 

  50. I.O. Troyanchuk, V.A. Khomchenko, H. Szymczak, M. Baran, J. Exp. Theor. Phys. 97, 1231 (2003)

    Article  CAS  Google Scholar 

  51. I. Radulov, V. Lovchinov, D. Dimitrov, A. Apostolov, J. Phys. Conf. Ser. 153, 012064 (2009)

    Article  Google Scholar 

  52. H.L. Ju, Y.S. Nam, J.E. Lee, H.S. Shin, J. Magn. Magn. Mater. 219, 1 (2000)

    Article  CAS  Google Scholar 

  53. D. Guo, L.M. Moreno-Ramírez, C. Romero-Muñiz, Y. Zhang, J.Y. Law, V. Franco, J. Wang, Z. Ren, Sci. China Mater. 64, 2846 (2021)

    Article  CAS  Google Scholar 

  54. K. Synoradzki, W. Kowalski, M. Falkowski, T. Toliński, A. Kowalczyk, Acta Phys Pol A 126, 162 (2014)

    Article  Google Scholar 

  55. A.V. Morozkin, A.V. Garshev, V.O. Yapaskurt, J. Yao, S. Quezado, S.K. Malik, O. Isnard, Intermetallics (Barking) 113, 106588 (2019)

    Article  CAS  Google Scholar 

  56. N. Pavan Kumar, D. Singh, M.M. Patidar, J. Satapathy, V. Ganesan, P.D. Babu, A. Srinivas, M.M. Raja, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019)

    Article  Google Scholar 

  57. P. Sathishkumar, S. Madeswaran, Appl. Phys. A Mater. Sci. Process. 128, 1 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank VIT management for providing SEED-Grant, their continuous support and encouragement to carry out research and development works, and Mrs. M.V. Beena, IITM, Chennai for providing VSM facilities to perform magnetic characterization study. Authors are gratefully acknowledged Dr. Deepannita Chakra borty PSG Institute of Technology and Applied Research, Coimbatore and Dr.M.G.Shalini VIT Chennai for their good suggestions and fruitful discussion.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Sathishkumar P.: Methodology, Investigation, Formal analysis, Writing—original draft, Writing—review & editing Methodology, Investigation, Formal analysis, Writing—Original Draft, Writing—Review & Editing. Madeswaran S.: Resources, Validation, Formal analysis, Supervision, Resources, Validation, Visualization.

Corresponding author

Correspondence to S. Madeswaran.

Ethics declarations

Conflict of interest

The authors declare that we have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathishkumar, P., Madeswaran, S. The effect of Jahn–Teller distortion on the magnetic and magnetocaloric effect in La-doped gadolinium barium manganite. J Mater Sci: Mater Electron 35, 692 (2024). https://doi.org/10.1007/s10854-024-12394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12394-x

Navigation