Skip to main content
Log in

Rational design of integrated high-performance flexible zinc-ion hybrid supercapacitors based on electroactive biomass regulated graphene oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

All-in-one zinc-ion hybrid supercapacitors constitute an indispensable part in adapting to the rapid development of flexible energy storage equipment. In this work, reduced graphene oxide/tannin (rGO/TA) complexes were used to make the flexible electrodes by vacuum assisted process. Tannin can reduce the agglomeration of reduced graphene oxide while providing additional pseudocapacitance, which leads to a large improvement in the electrochemical performance of the rGO/TA complex. At the same time, Mn2+ was added to the electrolyte to improve the energy storage capacity of Zn-ion hybrid supercapacitors (ZIHC). According to this reasonable design, the quasi-solid-state ZIHC assembled with an integrated electrode composed of rGO/TA cathode // Zn/EG anode has excellent electrochemical performance (the maximum capacity of 195.6 mAh g−1) and flexibility (the capacity is maintained at 97.3% after 5000 bends). In addition, this reliable method can also be used to manufacture ZIHC with other desired shapes to adapt it to wearable electronic devices. This work conceptually illustrates a methodology for designing and preparing integrated multifunctional wearable devices, and the prepared devices are characterized by compactness, ease of assembly, flexibility, and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. H.W. Zhou, J.L. Lai, B.H. Zheng, X.L. Jin, G.X. Zhao, H.B. Liu, W.X. Chen, A.J. Ma, X.S. Li, Y.P. Wu, From glutinous-rice-inspired adhesive organohydrogels to flexible electronic devices toward wearable sensing, power supply, and energy storage. Adv. Funct. Mater. 32, 2108423 (2022)

    Article  CAS  Google Scholar 

  2. M. Guan, Y. Liu, H. Du, Y.Y. Long, X.Y. An, H.B. Liu, B.W. Cheng, Durable, breathable, sweat-resistant, and degradable flexible sensors for human motion detection. Chem. Eng. J. 462, 142151 (2023)

    Article  CAS  Google Scholar 

  3. M.T. Ahmad, M.M. Alam, M. Imran, R. Azim, M.M. Alam, Nanomaterial-based biosensor for effective pressure sensing in biological applications. J. Mater. Sci. Mater. Electron. 34(28), 1946 (2023)

    Article  CAS  Google Scholar 

  4. X.X. Li, H.D. Xie, Y. Feng, Y.Q. Qu, L.D. Zhai, H.H. Sun, X.F. Liu, C.P. Hou, All pseudocapacitive MXene-PPy//MnO2 flexible asymmetric supercapacitor. J. Mater. Sci. Mater. Electron. 34, 1878 (2022)

    Article  Google Scholar 

  5. L. Wen, J. Chen, J. Liang, F. Li, H.M. Cheng, Flexible batteries ahead. Natl. Sci. Rev. 4, 20–23 (2016)

    Article  Google Scholar 

  6. Z.M. Zhang, X.Y. Wang, X. Li, J.P. Zhao, G. Liu, W.S. Yu, X.T. Dong, J.X. Wang, Review on composite solid electrolytes for solid-state lithium-ion batteries. Mater. Today Sustain. 21, 100316 (2023)

    Article  Google Scholar 

  7. Y. Zhang, X.J. Xu, Machine learning properties of electrolyte additives: a focus on redox potentials. Ind. Eng. Chem. Res. 60, 3434–4354 (2021)

    Google Scholar 

  8. X.S. Xie, J.J. Li, Z.Y. Xing, B.A. Lu, S.Q. Liang, J. Zhou, Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10, nwac281 (2023)

    Article  CAS  PubMed  Google Scholar 

  9. S.G. Chen, M.F. Zhang, P.M. Zou, B.Y. Sun, S.W. Tao, Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy Environ. Sci. 15, 1805–1839 (2022)

    Article  CAS  Google Scholar 

  10. L.B. Dong, W. Yang, W. Yang, Y. Li, W.J. Wu, G.X. Wang, Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 7, 13810–13832 (2019)

    Article  CAS  Google Scholar 

  11. K.Q. Qu, X.J. Lu, Z.H. Huang, J. Liu, Synthesis strategies of optimized cathodes and mechanisms for zinc ion capacitors. Mater. Today Energy 30, 101188 (2022)

    Article  CAS  Google Scholar 

  12. K.H. Kenari, A. Bahari, M.S. Lashkenari, Widely improved supercapacitance properties of zirconium-cobalt ferrite nanoparticles by N-doped graphene oxide as an electrode in supercapacitor. J. Energy Storage 74, 109274 (2023)

    Article  Google Scholar 

  13. C. Yang, Y.Y. Xiao, H. You, Z.W. Liu, Q.F. Liu, L.M. Zang, A facile fabrication of lightweight current collector based on used newspaper for flexible zinc-ion hybrid supercapacitors. J. Alloy. Compd. 967, 171729 (2023)

    Article  CAS  Google Scholar 

  14. W.J. Song, S. Lee, G. Song, H.B. Son, D.Y. Han, I. Jeong, Y. Bang, S. Park, Recent progress in aqueous based flexible energy storage devices. Energy Storage Mater. 30, 260–286 (2020)

    Article  Google Scholar 

  15. X.Q. Zhong, C. Yang, Y.Q. Zhao, J.H. Qiu, L.M. Zang, Rational design of layered MnO2@graphene with hierarchical structure for flexible quasisolid-state aqueous zinc-ion battery via laser activation. Adv. Mater. Technol. 8, 2201430 (2023)

    Article  CAS  Google Scholar 

  16. J. Shang, W.C. Yu, L. Wang, C. Xie, H.L. Xu, W.S. Wang, Q.Y. Huang, Z.J. Zheng, Metallic glass-fiber fabrics: a new type of flexible, super-lightweight, and 3D current collector for lithium batteries. Adv. Mater. 35, 2211748 (2023)

    Article  CAS  Google Scholar 

  17. W. He, B. Wu, M.T. Lu, Z. Li, H. Qiang, Fabrication and performance of self-supported flexible cellulose nanofibrils/reduced graphene oxide supercapacitor electrode materials. Molecules 25, 2793 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Y. Liu, N. Xin, Q.J. Yang, W.D. Shi, 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. J. Colloid Interface Sci. 583, 288–298 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. L.P. Chi, S.H. Zheng, J.X. Ma, Y. Liu, F.F. Xing, F. Zhou, S.X. Wang, Z.S. Wu, 1.6 V high-voltage aqueous symmetric micro-pseudocapacitors based on two-dimensional polypyrrole/graphene nanosheets. Carbon 194, 240–247 (2022)

    Article  CAS  Google Scholar 

  20. W.C. Du, J.F. Xiao, H.B. Geng, Y. Yang, Y.F. Zhang, E.H. Ang, M.H. Ye, C.C. Li, Rational-design of polyaniline cathode using proton doping strategy by graphene oxide for enhanced aqueous zinc-ion batteries. J. Power. Sources 450, 227716 (2020)

    Article  CAS  Google Scholar 

  21. H.Y. Zhang, Z.C. Wei, J.H. Wu, F. Cheng, Y.A. Ma, W.J. Liu, Y.F. Cheng, Y.J. Lin, N.S. Liu, Y.H. Gao, Y. Yue, Interlayer-spacing-regulated MXene/rGO foam for multi-functional zinc-ion microcapacitors. Energy Storage Mater. 50, 444–453 (2022)

    Article  Google Scholar 

  22. L.B. Dong, W. Yang, W. Yang, C.Y. Wang, Y. Li, C.J. Xu, S.W. Wan, F.R. He, F.Y. Kang, G.X. Wang, High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage. Nano-Micro Lett. 11, 94 (2019)

    Article  CAS  Google Scholar 

  23. P. Shang, M. Liu, Y.Y. Mei, Y.H. Liu, L.S. Wu, Y.F. Dong, Z.B. Zhao, J.S. Qiu, Urea-mediated monoliths made of nitrogen-enriched mesoporous carbon nanosheets for high-performance aqueous zinc ion hybrid capacitors. Small 18, 2108057 (2022)

    Article  CAS  Google Scholar 

  24. Z.Q. Dang, X. Li, Y. Li, L.B. Dong, Heteroatom-rich carbon cathodes toward high-performance flexible zinc-ion hybrid supercapacitors. J. Colloid Interface Sci. 644, 221–229 (2023)

    Article  CAS  PubMed  Google Scholar 

  25. A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150–7188 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. Y.C. Zhu, X.K. Ye, H.D. Jiang, J.X. Xia, Z.Y. Yue, L.H. Wang, Z.Q. Wan, C.Y. Jia, X.J. Yao, Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes. J. Power. Sources 453, 227851 (2020)

    Article  CAS  Google Scholar 

  27. J.J. Yao, F.Z. Li, R.Y. Zhou, C.C. Guo, X.R. Liu, Y.R. Zhu, Phosphorous-doped carbon nanotube/reduced graphene oxide aerogel cathode enabled by pseudocapacitance for high energy and power zinc-ion hybrid capacitors. Chin. Chem. Lett. 35, 108354 (2024)

    Article  CAS  Google Scholar 

  28. C.Y. Tang, P. Yu, L.S. Tang, Q.Y. Wang, R.Y. Bao, Z.Y. Liu, M.B. Yang, W. Yang, Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotox. Environ. Safe. 165, 299–306 (2018)

    Article  CAS  Google Scholar 

  29. C. Yang, J. Yang, C.L. Liang, L.M. Zang, Z.J. Zhao, H.J. Li, L.J. Bai, Flexible supercapacitors with tunable capacitance based on reduced graphene oxide/tannin composite for wearable electronics. J. Electroanal. Chem. 894, 115354 (2021)

    Article  CAS  Google Scholar 

  30. Y.D. Lei, Z.H. Tang, R.J. Liao, B.C. Guo, Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide. Green Chem. 13, 1655–1658 (2011)

    Article  CAS  Google Scholar 

  31. Y.A. Lee, J. Lee, D.W. Kim, C.Y. Yoo, S.H. Park, J.J. Yoo, S. Kim, B. Kim, W.K. Cho, H. Yoon, Mussel-inspired surface functionalization of porous carbon nanosheets using polydopamine and Fe3+/tannic acid layers for high-performance electrochemical capacitors. J. Mater. Chem. A 5, 25368–25377 (2017)

    Article  CAS  Google Scholar 

  32. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. X.Y. Zhao, M. Gnanaseelan, D. Jehnichen, F. Simon, J. Pionteck, Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J. Mater. Sci. 54, 10809–10824 (2019)

    Article  CAS  Google Scholar 

  34. Y. Wang, H. Huang, Y.S. Fang, P. Hu, Z.F. Shen, Y.G. Wang, X. Li, Enhancement of Zn-ion hybrid supercapacitors by using dual redox-active ions electrolytes. Chem. Eng. J. 445, 136796 (2022)

    Article  CAS  Google Scholar 

  35. G.H. An, J. Hong, S. Pak, Y. Cho, S. Lee, B. Hou, S. Cha, 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors. Adv. Energy Mater. 10, 1902981 (2019)

    Article  Google Scholar 

  36. R.X. Li, X.P. Shen, Z.Y. Ji, Y.X. Xue, P. Song, H. Zhou, L.R. Kong, S.P. Zeng, C.X. Chen, Ultralight coaxial fiber-shaped zinc-ion hybrid supercapacitor with high specific capacitance and energy density for wearable electronics. Chem. Eng. J. 457, 141266 (2023)

    Article  CAS  Google Scholar 

  37. D.W. Wang, Z.R. Sun, X.L. Han, Eutectic salt induced self-activation technique for porous graphene-like carbon nanosheets as the high-capacity cathodes for Zn-ion hybrid supercapacitors. J. Electroanal. Chem. 921, 116673 (2022)

    Article  CAS  Google Scholar 

  38. Y. Wang, J. Cao, J.H. Guo, J.L. Zhang, G.S. Liu, D. Wang, W.M. Si, J. Song, X.X. Meng, G.W. Wen, Flexible reduced graphene oxide/V2O5 composite battery-type cathode and MXene capacitor-type anode for aqueous zinc ion hybrid supercapacitors with high energy density. J. Alloy. Compd. 915, 165418 (2022)

    Article  CAS  Google Scholar 

  39. W.Y. Zhang, H.W. Kang, Z.Y. Gu, H.L. Liu, Z.K. Li, X.A. Li, B.C. Yang, Hierarchical porous N-doped functionalized reduced graphene oxide by 2-aminoanthraquinone for aqueous zinc-ion hybrid capacitors with high energy density and ultralong-life. J. Energy Storage 61, 106715 (2023)

    Article  Google Scholar 

  40. Q. Wang, S.L. Wang, X.H. Guo, L.M. Ruan, N. Wei, Y. Ma, J.Y. Li, M. Wang, W.Q. Li, W. Zeng, MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electron. Mater. 5, 1900537 (2019)

    Article  CAS  Google Scholar 

  41. R.W. Cui, Z.W. Zhang, H.J. Zhang, Z.H. Tang, Y.H. Xue, G.Z. Yang, Aqueous organic zinc-ion hybrid supercapacitors prepared by 3D vertically aligned graphene-polydopamine composite electrode. Nanomaterials 12, 386 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Guangxi Province (AB23075171, 2022GXNSFAA035597); the National Natural Science Foundation of China (22265007, 52263016); the Science and Technology Plan of Guilin (ZY20220101).

Author information

Authors and Affiliations

Authors

Contributions

Z. Liu: Conceptualization, Investigation, Writing-Original Draft. T. Xue: Investigation, Methodology. Q. Liu: Writing-Review & Editing, Supervision. F. Qin: Methodology, Validation. M. He: Supervision, Funding acquisition, Project administration. C. Yang: Writing-Original Draft, Supervision, Funding acquisition, Project administration. L. Zang: Funding acquisition, Validation.

Corresponding authors

Correspondence to Qifan Liu, Feng Qin or Chao Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3532 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Xue, T., Liu, Q. et al. Rational design of integrated high-performance flexible zinc-ion hybrid supercapacitors based on electroactive biomass regulated graphene oxide. J Mater Sci: Mater Electron 35, 596 (2024). https://doi.org/10.1007/s10854-024-12363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12363-4

Navigation