Skip to main content

Advertisement

Log in

Novel approaches to the degradation of nitrophenols using TiO2-biopolymer-ligand-metal complex as photocatalysts

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrophenols has become a significant threat to the ecosystem and the health of the human beings. Photocatalytic degradation is considered to be the utmost competent approach for the amputation of nitroaromatic pollutants. In this research, 2-nitrophenol (MNP), 2,4-dinitrophenols (DNP), and 2,4,6-trinitrophenol or picric acid (PA) are taken for the degradation studies using the photo-Fenton catalyst of synthesized TiO2 nanoparticle modified with biopolymer containing organic and inorganic functionalities. The morphological study reveals the uniformly distributed TiO2 nanoparticles (15 nm) surfaces are encapsulated by the active site-rich chitosan-ligand-copper complex facilitating more absorption and enhancing the photocatalytic activity toward the target molecules. The UV spectra confirm the predominant shifting of absorption peak in the range 305–310 nm which results due to the formation of TiO2-CBGCu nanocomposites. The zeta potential of the synthesized nanocomposites TiO2-CBGCu 5%, TiO2-CBGCu 10%, and TiO2-CBGCu 20% are − 12, − 20, and − 29 mV which reveals that the value increases with the increase in CBGCu content which in turn signifies the more stability in aqueous solution. Amid the prepared nanocomposites, TiO2-CBGCu 10% demonstrates the imperative catalytic performances toward MNP, DNP, and PA pollutants along with the Fenton’s reagent at pH 3.0 under visible light and solar light. It shows effective degradation for strong acid PA within 18 min in visible light compared to MNP and DNP due to the presence of more active sites in the synthesized nanocomposites. This work has created awareness about the multifunctional catalyst and the effectiveness of the same has opened a new passage to eliminate nitrophenols from the agonized environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data and materials as well as software application or custom code support their published claims and comply with field standards.

References

  1. N.K. Yetim, E.H. Özkan, H. Öğütçü, Environ. Sci. Pollut. Res. 30, 106585–106597 (2023)

    Article  Google Scholar 

  2. E.H. Özkan, J. Mol. Struct. 1274, 134564 (2023)

    Article  Google Scholar 

  3. E.H. Özkan, N. Aslan, M.M. Koç, N.K. Yetim, N. Sari, J. Mater. Sci. Mater. Electron. 33, 1039–1053 (2022)

    Article  Google Scholar 

  4. Y. Deng, J.D. Englehardt, Water Res. 40, 3683–3694 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. X. Duan, H. Sun, Z. Shao, S. Wang, Appl. Catal. B 224, 973–982 (2018)

    Article  CAS  Google Scholar 

  6. X. Huang, H. Zhou, X. Yue, S. Ran, J. Zhu, ACS Omega. 6, 9095–9103 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. Su, L.P. Wang, X. Ma, J. Wang, S. Zhan, Angew. Chem. Int. Ed. 60, 21261–21266 (2021)

    Article  CAS  Google Scholar 

  8. S. Ghatge, Y. Yang, Y. Ko, Y. Yoon, J.H. Ahn, J.J. Kim, H.G. Hur, J. Hazard. Mater. 423, 127067 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. D. Chen, S. Chen, Y. Jiang, S. Xie, H. Quan, L. Huan, X. Luo, L. Guo, Rsc Adv. 7, 49024–49030 (2017)

    Article  CAS  Google Scholar 

  10. X. Wang, X. Zhang, Y. Zhang, Y. Wang, S.P. Sun, W. Duo Wu, Z. Wu, J. Mater. Chem. A 8, 15513–15546 (2020)

    Article  CAS  Google Scholar 

  11. H. Wu, L. Zhang, S. Qu, A. Du, J. Tang, Y.H. Ng, ACS Energy Lett. 8, 5, 2177–2184 (2023)

    Article  CAS  Google Scholar 

  12. H. Wu, L. Zhang, A. Du, R. Irani, R.V.D. .Krol, F.F. .Abdi, Y.H. Ng, Nat. Commun. 13, 6231 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. B. Anusha, M. Anbuchezhiyan, R. Sribalan, Reac Kinet Mech. Cat. 134, 501–515 (2021)

    Article  CAS  Google Scholar 

  14. K. Tanaka, W. Luesaiwong, T. Hisanaga, J. Mol. Catal. A Chem. 122, 67–74 (1997)

    Article  CAS  Google Scholar 

  15. M. Mirzaei, S. Sabbaghi, M.M. Zerafat, Can. J. Chem. Eng. 96, 2544–2552 (2018)

    Article  CAS  Google Scholar 

  16. R. Fatima, M.N. Afridi, V. Kumar, J. Lee, I. Ali, K.H. Kim, J.O. Kim, J. Clean. Prod. 231, 899–912 (2019)

    Article  CAS  Google Scholar 

  17. M. Manimohan, S. Pugalmani, K. Ravichandran, M.A. Sithique, RSC Adv. 10, 18259–18279 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D.A.P. Ruiz, G.D. Ávila, C.A. Suesca, A.D.G. Delgado, A. Herrera, ACS Omega. 5, 26463–26475 (2020)

    Article  Google Scholar 

  19. Y. Haldorai, J.J. Shim, Polym. Compos. 35, 327–333 (2013)

    Article  Google Scholar 

  20. S. Rashid, C. Shen, X. Chen, S. Li, Y. Chen, Y. Wen, J. Liu, RSC Adv. 5, 90731–90741 (2015)

    Article  CAS  Google Scholar 

  21. M. Nasrollahzadeh, R. Akbari, S. Sakhaei, Z. Nezafat, S. Banazadeh, G. Hegde, J. Mol. Liq. 330, 115668 (2021)

    Article  CAS  Google Scholar 

  22. A.V. Raut, H.M. Yadav, A. Gnanamani, S. Pushpavanam, S.H. Pawar, Coll. Surf. B Biointerfaces 148, 566–575 (2016)

    Article  CAS  Google Scholar 

  23. D. Wang, P. Zhao, J. Yang, G. Xu, H. Yang, Z. Shi, Q. Hu, B. Dong, Z. Guo, Coll. Surf. Physicochem. Eng. Asp. 603, 125147 (2020)

    Article  CAS  Google Scholar 

  24. A. Naz, S. Arun, S.S. Narvi, M.S. Alam, A. Singh, P. Bhartiya, P.K. Dutta, Int. J. Biol. Macromol. 110, 215–226 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. J. Zhou, Z. Zhang, B. Cheng, J. Yu, Chem. Eng. J. 211–212, 153–160 (2012)

    Article  Google Scholar 

  26. S. Afzal, N.M. Julkapli, L.K. Mun, Mater. Sci. Semicond. Process. 99, 34–43 (2019)

    Article  CAS  Google Scholar 

  27. M. Manimohan, R. Paulpandiyan, S. Pugalmani, M.A. Sithique, Int. J. Biol. Macromol. 163, 801–816 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. A.A. Menazea, M.M. Eid, M.K. Ahmed, Int. J. Biol. Macromol. 147, 194–199 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. D. Bharathi, R. Ranjithkumar, B. Chandarshekar, V. Bhuvaneshwari, Int. J. Biol. Macromol. 141, 476–483 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. S. Sathiyavimal, S. Vasantharaj, T. Kaliannan, A. Pugazhendhi, Carbohydr. Polym. 241, 116243 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. S. Roy, L. Zhai, H.C. Kim, D.H. Pham, H. Alrobei, J. Kim, Polymers. 13, 228 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. X. Li, S. Raza, C. Liu, J. Environ. Chem. Eng. 9, 106133 (2021)

    Article  CAS  Google Scholar 

  33. D. Hariharan, P. Thangamuniyandi, P. Selvakumar, U. Devand, A. Pugazhendhi, R. Vasantharaja, L.C. Nehru, Process. Biochem. 87, 83–88 (2019)

    Article  CAS  Google Scholar 

  34. Q. Gao, X. Wu, Y. Fan, X. Zhou, Dyes Pigm. 95, 534–539 (2012)

    Article  CAS  Google Scholar 

  35. H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectrosc. 37, 33–38 (2005)

    Article  CAS  Google Scholar 

  36. M.C. Mathpal, A.K. Tripathi, M.K. Singh, S.P. Gairola, S.N. Pandey, A. Agarwal, Chem. Phys. Lett. 55, 182–186 (2013)

    Article  Google Scholar 

  37. W. Yang, H. Shen, H. Min, J. Ge, J. Mater. Sci. 55, 701–712 (2020)

    Article  CAS  Google Scholar 

  38. M. Feng, W. Lu, Y. Zhou, R. Zhen, H. He, Y. Wang, C. Li, Sci. Rep. 10, 15370 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Z. Jin, C. Liu, K. Qi, X. Cui, Sci. Rep. 7, 39695 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. Jindal, S. Basu, C.P. Aby, RSC Adv. 5, 69378–69387 (2015)

    Article  CAS  Google Scholar 

  41. Z. Wang, C. Liu, K. Qi, X. Cui, Sci. Rep. 7, 39695 (2017)

    Article  Google Scholar 

  42. Y. Wang, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, J. Nanomater. 2014, 178152 (2014)

    Google Scholar 

  43. G. Bharath, V. Veeramani, S.M. Chen, R. Madhu, M.M. Raja, A. Balamurugan, D. Mangalaraj, C. Viswanathan, N. Ponpandian, RSC Adv. 5(18), 13392–13401 (2015)

    Article  CAS  Google Scholar 

  44. G. Jeevitha, S. Sivaselvam, S. Keerthana, D. Mangalaraj, N. Ponpandian, Chemosphere. 297, 134023 (2022)

    Article  CAS  PubMed  Google Scholar 

  45. S. Rajesh Kumar, C.V. Abinaya, S. Amirthapandian, N. Ponpandian, Mater. Res. Bull. 93, 270–281 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SRM Valliammai Engineering College and Sri Sairam Institute of Technology for providing the research lab facilities. Also the authors thank the Nanotechnology Research Center, SRM IST for providing characterization facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BA contributed to synthesis of TiO2-CBGCu nanocomposites, characterization, and photocatalytic degradation of nitrophenols using combined catalysts, TiO2-CBGCu, and Fenton’s reagent. MA contributed to designing and guidance during research. CD contributed to formal analysis. NSAA contributed to characterization and validation

Corresponding author

Correspondence to M. Anbuchezhiyan.

Ethics declarations

Conflict of interest

Regarding this work, conflict is none; all co-authors have checked the manuscript and have agreed to the submission.

Ethical approval

All co-authors ensure that accepted principles of ethical and professional conduct have been followed.

Consent to participate

Not applicable.

Consent for application

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anusha, B., Anbuchezhiyan, M., Deepa, C. et al. Novel approaches to the degradation of nitrophenols using TiO2-biopolymer-ligand-metal complex as photocatalysts. J Mater Sci: Mater Electron 35, 544 (2024). https://doi.org/10.1007/s10854-024-12323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12323-y

Navigation