Skip to main content

Advertisement

Log in

The effect of mechanical energy loss and bonding layer on magnetoelectric performance for metglas/PVDF laminated composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A finite element model for Magnetoelectric (ME) effect of Metglas/PVDF laminates is built in this study, considering the mechanical energy loss and bonding layer. By introducing a loss factor, the ME voltage value (αME) of composite reduces from 14,467.6  to 148.4 V/(cm·Oe), which are more consistent with the experimental results. The detailed analysis focuses on the influences of geometric parameters, mechanical energy loss, and the adhesive layer on the magnetostrictive effect in ME composites. It was observed that reducing the length and increasing the thickness enhanced demagnetization of the magnetostrictive phase while diminishing ME effect. Furthermore, an increase in the thickness of the piezoelectric phase and epoxy resin resulted in a reduction in stress transfer and a decrease in the ME effect. The amplification of the material loss factor led to an increase in stress loss, consequently weakening the ME effect. The ME effect reached its peak value of 192.7 V/(cm·Oe) when the Young's modulus of epoxy resin was approximately 0.1 GPa, and a significant increase in resonance frequency was observed with an increasing Young's modulus of epoxy resin. This work can make the modeling results closer to the actual experimental phenomena, which is crucial in guiding the development and performance optimization of ME materials, as well as encouraging their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data presented in this study are available from the corresponding author upon reasonable request.

References

  1. W. He, S. Liu, J. Magn. Magn. Mater. 542, 168609 (2022)

    Article  CAS  Google Scholar 

  2. C.X. Sun et al., IEEE Sens. J. 22, 4028 (2022)

    Article  CAS  Google Scholar 

  3. A. Lasheras et al., J. Alloys Compd. 884, 161065 (2021)

    Article  CAS  Google Scholar 

  4. F.A. Fedulov et al., J. Magn. Magn. Mater. 547, 168943 (2022)

    Article  CAS  Google Scholar 

  5. J. Kim et al., Nano Energy 89, 106409 (2021)

    Article  CAS  Google Scholar 

  6. J. Xu et al., Ceram. Int. 49, 25170 (2023)

    Article  CAS  Google Scholar 

  7. X.J. Mu et al., J. Mater. Sci. 56, 9728 (2021)

    Article  CAS  Google Scholar 

  8. D.D. Wen et al., Int. J. Mol. Sci. 23, 15992 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Chaurasiya et al., Ceram. Int. 46, 25873 (2020)

    Article  CAS  Google Scholar 

  10. L. Wang, F.G. Yuan, Smart Mater. Struct. 17, 045009 (2008)

    Article  Google Scholar 

  11. H. Zhang et al., J. Phys. D Appl. Phys. 54, 095003 (2021)

    Article  CAS  Google Scholar 

  12. B. Qi et al., IEEE Access 8, 68049 (2020)

    Article  Google Scholar 

  13. X.T. Yuan et al., Nano Energy 85, 105985 (2021)

    Article  CAS  Google Scholar 

  14. J.Y. Zhai et al., Appl. Phys. Lett. 89, 083507 (2006)

    Article  Google Scholar 

  15. X.D. He et al., Ceram. Int. 44, S100 (2018)

    Article  CAS  Google Scholar 

  16. H. Staaf et al., Sci. Rep. 12, 5233 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. G. Zhou et al., Ceram. Int. 48, 10244 (2022)

    Article  CAS  Google Scholar 

  18. H. Wan et al., Acta Phys. Sin. 54, 1426 (2005)

    Article  Google Scholar 

  19. Y.K. Yang, B.T. Yang, Int. J. Mech. Sci. 199, 106411 (2021)

    Article  Google Scholar 

  20. M. Sadeghi et al., J. Mater. Sci. Mater. Electron. 30, 16527 (2019)

    Article  CAS  Google Scholar 

  21. Y. Lefevre et al., IEEE Trans. Magn. 54, 7400304 (2018)

    Article  Google Scholar 

  22. C.S.L. Fernandez et al., Compos. Sci. Technol. 146, 119 (2017)

    Article  Google Scholar 

  23. Y. Uetsuji et al., Comput. Mater. Sci. 158, 159 (2019)

    Article  CAS  Google Scholar 

  24. Y.X. Liu et al., J. Appl. Phys. 94, 5111 (2003)

    Article  CAS  Google Scholar 

  25. N. Galopin et al., IEEE Trans. Magn. 44, 834 (2008)

    Article  Google Scholar 

  26. T.T. Nguyen et al., J. Appl. Phys. 109, 084904 (2011)

    Article  Google Scholar 

  27. J.J. Zhang et al., Compos. Struct. 296, 115876 (2022)

    Article  CAS  Google Scholar 

  28. F. Yang et al., Acta Phys. Sin. 56, 3539 (2007)

    Article  Google Scholar 

  29. B. Zhang et al., IEEE Access 8, 187848 (2020)

    Article  Google Scholar 

  30. D. Stachowiak, COMPEL 35, 1371 (2016)

    Article  Google Scholar 

  31. C. Mudivarthi et al., Smart Mater. Struct. 17, 035005 (2008)

    Article  Google Scholar 

  32. X.Q. Wang et al., Compos. Sci. Technol. 216, 109069 (2021)

    Article  CAS  Google Scholar 

  33. B. Chen et al., Polymers 14, 2427 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. H. Abramovich et al., Prog. Aerosp. Sci. 78, 8 (2015)

    Article  Google Scholar 

  35. N. Peyret et al., Int. J. Appl. Mech. 8, 1650097 (2016)

    Article  Google Scholar 

  36. M.Y. Liao et al., Jpn. J. Appl. Phys. 56, 024101 (2017)

    Article  Google Scholar 

  37. C. Li et al., J. Micromech. Microeng. 31, 115001 (2021)

    Article  Google Scholar 

  38. P. Li et al., IET Sci. Meas. Technol. 16, 327 (2022)

    Article  Google Scholar 

  39. C.H. Wang et al., Sens. Actuator A 359, 114456 (2023)

    Article  CAS  Google Scholar 

  40. C.Z. Ma et al., Eur. J. Mech. A. Solids 99, 104948 (2023)

    Article  Google Scholar 

  41. H.M. Zhou et al., J. Alloys Compd. 672, 292 (2016)

    Article  CAS  Google Scholar 

  42. J. Goken et al., Acta Phys. Pol. A 133, 1241 (2018)

    Article  Google Scholar 

  43. Y.W. Gao, J.J. Zhang, Smart Mater. Struct. 22, 015015 (2013)

    Article  Google Scholar 

  44. N. Pereira et al., Materials 13, 1729 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M.P. Silva et al., J. Magn. Magn. Mater. 377, 29 (2015)

    Article  CAS  Google Scholar 

  46. Y.B. Long et al., AIP Adv. 7, 125029 (2017)

    Article  Google Scholar 

  47. G.T. Hwang et al., ACS Appl. Mater. Interfaces 10, 32323 (2018)

    Article  CAS  PubMed  Google Scholar 

  48. A. Lasheras, J. Gutiérrez, J. Magn. Magn. Mater. 479, 282 (2019)

    Article  CAS  Google Scholar 

  49. A. Lasheras et al., Appl. Phys. Lett. 108, 222903 (2016)

    Article  Google Scholar 

  50. Z.Q. Chu et al., J. Phys. D Appl. Phys. 51, 243001 (2018)

    Article  Google Scholar 

  51. J. Gu et al., Scr. Mater. 57, 529 (2007)

    Article  CAS  Google Scholar 

  52. A. Sagasti et al., Sensors (Basel) 19, 4296 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. A. Aharoni, J. Appl. Phys. 83, 3432 (1998)

    Article  CAS  Google Scholar 

  54. P.G. Saiz et al., J. Alloys Compd. 863, 158555 (2021)

    Article  CAS  Google Scholar 

  55. A. Lasheras, J. Gutierrez, J. Magn. Magn. Mater. 479, 282 (2019)

    Article  CAS  Google Scholar 

  56. C.J. Lu et al., AIP Adv. 10, 055308 (2020)

    Article  CAS  Google Scholar 

  57. Z.Q. Chu et al., Adv. Mater. 29, 1606022 (2017)

    Article  Google Scholar 

  58. J. Das et al., Appl. Phys. Lett. 95, 092501 (2009)

    Article  Google Scholar 

  59. Z. Fang et al., Appl. Phys. Lett. 95, 112903 (2009)

    Article  Google Scholar 

  60. N. Pereira et al., Materials (Basel) 13, 1729 (2020)

    Article  CAS  PubMed  Google Scholar 

  61. S.Y. Yang et al., J. Phys. D Appl. Phys. 55, 175002 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) with Grant Nos. 11604172.

Funding

This work was supported by the National Natural Science Foundation of China (NNSFC) with Grant Nos. 11604172.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, ancd analysis were performed by Xuanning Zhang, Jing Cao, Qiujiao Du, Ling Chen, Xia Wang, Derang Cao and Jie Xu. The frst draft of the manuscript was writen by Shaoxiong Fan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jie Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no fnancial and personal relationships with other people or organizations that can inappropriately infuence our work.

Ethical approval

The authors declare that this study has undergone ethical review and complies with relevant ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7020 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Zhang, X., Li, Y. et al. The effect of mechanical energy loss and bonding layer on magnetoelectric performance for metglas/PVDF laminated composites. J Mater Sci: Mater Electron 35, 552 (2024). https://doi.org/10.1007/s10854-024-12296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12296-y

Navigation