Skip to main content
Log in

Characteristics of hydrothermally synthesized SnS2 for thin film use

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin disulfide (SnS2) nanoparticles were synthesized via hydrothermal process and were deposited as ultrathin layer (27.5 nm) onto SLG via vacuum thermal evaporation. The SnS2 nanoparticles were characterized for their structural, purity, chemical, morphological, optical and electrical properties. The XRD patterns and the Raman spectra confirmed the successful synthesis of SnS2 nanoparticles. The stoichiometry and leaf like structure obtained from EDS and FESEM analysis of the SnS2 nanoparticles further proved its formation. The ultrathin layer deposited and annealed at 300 °C for 1 h showed XRD patterns of hexagonal structured SnS2 with crystallinity of 57.7 nm, bandgap energy of 2.7 eV and resistivity of 0.65 Ω cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data presented in the research were generated from various laboratories at Universiti Putra Malaysia, with instruments used for the generation duly acknowledged in the experimental details.

References

  1. D.B. Bhagyashri, Tuning the magnetic and electronic properties of monolayer SnS2 by 3d transition metal doping: a DFT study. Mater. Today Commun. 33, 104626 (2022)

    Article  Google Scholar 

  2. R.K. Gupta, F. Yakuphanoglu, Photoconductive Schottky diode based on Al/p-Si/SnS 2/Ag for optical sensor applications. Sol. Energy. 86(5), 1539–1545 (2012). https://doi.org/10.1016/j.solener.2012.02.015

    Article  ADS  CAS  Google Scholar 

  3. S. Gedi, S. Alhammadi, J. Noh, V.R. Minnam Reddy, H. Park, A.M. Rabie, J.J. Shim, D. Kang, W.K. Kim, SnS2 nanoparticles and thin film for application as an adsorbent and photovoltaic buffer. Nanomaterials (2022). https://doi.org/10.3390/nano12020282

    Article  PubMed  PubMed Central  Google Scholar 

  4. M. Haghighi, M. Minbashi, N. Taghavinia, D.H. Kim, S.M. Mahdavi, A.A. Kordbacheh, A modeling study on utilizing SnS2 as the buffer layer of CZT(S, Se) solar cells. Sol. Energy. 167, 165–171 (2018). https://doi.org/10.1016/j.solener.2018.04.010

    Article  ADS  CAS  Google Scholar 

  5. A. Cantas, F. Turkoglu, E. Meric, F.G. Akca, M. Ozdemir, E. Tarhan, L. Ozyuzer, G. Aygun, Importance of CdS buffer layer thickness on Cu2ZnSnS4-based solar cell efficiency. J. Phys. D (2018). https://doi.org/10.1088/1361-6463/aac8d3

    Article  Google Scholar 

  6. S.P. Nehra, S. Chander, A. Sharma, M.S. Dhaka, Effect of thermal annealing on physical properties of vacuum evaporated In2S3 buffer layer for eco-friendly photovoltaic applications. Mater. Sci. Semiconduct. Process. 40, 26–34 (2015). https://doi.org/10.1016/j.mssp.2015.06.049

    Article  CAS  Google Scholar 

  7. K.S. Gour, R. Parmar, R. Kumar, V.N. Singh, Cd-Free Zn(O,S) as alternative buffer layer for chalcogenide and kesterite based thin films solar cells: a review. J. Nanosci. Nanotechnol. 20(6), 3622–3635 (2019). https://doi.org/10.1166/jnn.2020.17537

    Article  CAS  Google Scholar 

  8. B. Yang, X. Zuo, P. Chen, L. Zhou, X. Yang, H. Zhang, G. Li, M. Wu, Y.-Q. Ma, S. Jin, X.S. Chen, Y. Ma, X. Chen, Tin sulfide @reduced graphene oxide nanocomposite for high efficiency dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 137 (2014)

    Article  ADS  Google Scholar 

  9. J. Hao, D. Zhang, Q. Sun, S. Zheng, J. Sun, Y. Wang, Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale. 10(15), 7210–7217 (2018). https://doi.org/10.1039/c8nr01379a

    Article  CAS  PubMed  Google Scholar 

  10. Z. Cao, Y. Yin, P. Fu, D. Li, Y. Zhou, Y. Deng, Y. Peng, W. Wang, W. Zhou, D. Tang, TiO2 nanosheet arrays with layered SnS2 and CoOx nanoparticles for efficient photoelectrochemical water splitting. Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-3168-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. R. Lather, P. Jeevanandam, Novel thermal decomposition method for the synthesis of iron-doped SnS2 nanoparticles and studies on their peroxidase-like activity. ChemNanoMat (2022). https://doi.org/10.1002/cnma.202200036

    Article  Google Scholar 

  12. C.S. Diko, M. Abitonze, Y. Liu, Y. Zhu, Y. Yang, Synthesis and applications of dimensional SnS2 and SnS2/carbon nanomaterials.  Nanomaterials (2022). https://doi.org/10.3390/nano12244497

    Article  PubMed  PubMed Central  Google Scholar 

  13. D. Gu, W. Liu, J. Wang, J. Yu, J. Zhang, B. Huang, M.N. Rumyantseva, X. Li, Au functionalized SnS2 nanosheets based chemiresistive NO2 sensors. Chemosensors (2022). https://doi.org/10.3390/chemosensors10050165

    Article  Google Scholar 

  14. S. Nipom, R. Das, Asim, C. Avijit, Optical and structural studies of tin disulfide (SnS2) synthesized by Facile Hydrothermal Method. Lett. Appl. Nanobiosci. 12(2), 47 (2022). https://doi.org/10.33263/lianbs122.047

    Article  ADS  Google Scholar 

  15. Y. Hu, X. Chen, X. Ren, Z. Huang, X. Qi, J. Zhong, Facile hydrothermally synthesis of hexagon tin disulfide nanosheets for high-performance photocatalytic hydrogen generation. J. Mater. Science: Mater. Electron. (Vol. 29, 19614–19619 (2018). https://doi.org/10.1007/s10854-018-0164-0. Springer New York LLC

    Article  CAS  Google Scholar 

  16. K. Anlin Lazar, V.J. Cicily Rigi, D. Divya, K.J. Saji, Effect of annealing on structural and optical properties of SnS2 thin films grown by thermal evaporation and post sulphur annealing technique.  IOP Conf. Ser.: Mater. Sci. Eng. 1166(1), 012004 (2021). https://doi.org/10.1088/1757-899x/1166/1/012004

    Article  CAS  Google Scholar 

  17. Y. Lei, Y. Lei, J. Luo, J. Luo, X. Yang, X. Yang, X. Yang, T. Cai, T. Cai, R. Qi, R. Qi, L. Gu, L. Gu, Z. Zheng, Z. Zheng, Thermal evaporation of large-area SnS2Thin films with a UV-to-NIR photoelectric response for flexible photodetector applications. ACS Appl. Mater. Interfaces 12(22), 24940–24950 (2020). https://doi.org/10.1021/acsami.0c01781

    Article  CAS  PubMed  Google Scholar 

  18. P. Scherrer, Determination of the size and internal structure of colloid particles using X-rays. News Soc. Sci. Göttingen. 2, 96–100 (1918)

    Google Scholar 

  19. C. Gurnani, S.L. Hawken, A.L. Hector, R. Huang, M. Jura, W. Levason, J. Perkins, G. Reid, G.B.G. Stenning, Tin(iv) chalcogenoether complexes as single source precursors for the chemical vapour deposition of SnE2 and SnE (E = S, Se) thin films. Dalton Trans. 47(8), 2628–2637 (2018). https://doi.org/10.1039/c7dt03848h

    Article  CAS  PubMed  Google Scholar 

  20. A.J. Smith, P.E. Meek, W.Y. Liang, Phys. C: Solid State Phys. 10, 1321 (1977)

    Article  ADS  CAS  Google Scholar 

  21. D.Y. Lin, H.P. Hsu, K.H. Liu, P.H. Wu, Y.T. Shih, Y.F. Wu, Y.P. Wang, C.F. Lin, Enhanced optical response of SnS/SnS2 layered heterostructure. Sensors (2023). https://doi.org/10.3390/s23104976

    Article  PubMed  PubMed Central  Google Scholar 

  22. J.M. Mali, S.S. Arbuj, J.D. Ambekar, S.B. Rane, U.P. Mulik, D.P. Amalnerkar, Hydrothermal synthesis of SnS2 faceted nano sheets and their visible light driven photocatalytic performance. Sci. Adv. Mater. 5(12), 1994–1998 (2013). https://doi.org/10.1166/sam.2013.1667

    Article  CAS  Google Scholar 

  23. M. Dembek, S. Bocian, B. Buszewski, Solvent influence on zeta potential of stationary phase—mobile phase interface. Molecules (2022). https://doi.org/10.3390/molecules27030968

    Article  PubMed  PubMed Central  Google Scholar 

  24. F. Wooten, (1972). Optical properties of solids

  25. X. Hu, G. Song, W. Li, Y. Peng, L. Jiang, Y. Xue, Q. Liu, Z. Chen, J. Hu, Phase-controlled synthesis and photocatalytic properties of SnS, SnS 2 and SnS/SnS2 heterostructure nanocrystals. Mater. Res. Bull. 48(6), 2325–2332 (2013). https://doi.org/10.1016/j.materresbull.2013.02.082

    Article  CAS  Google Scholar 

  26. Keithley Instruments Inc, (2005). Measuring the resistivity and determining the conductivity type of semiconductor materials using a four-point collinear probe and the model 6221 DC and AC current source application note series

Download references

Funding

This work was supported by Pusat Transformasi Komuniti Universiti , Universiti Putra Malaysia (Grant no. FRGS/1/2018/ STG07/UPM/02/12)

Author information

Authors and Affiliations

Authors

Contributions

MHJ: conceptualization; investigation; data curation; writing—original draft. JYCL: Funding acquisition and supervision. MYO: data curation and validation, RAT: writing-review and editing, MB: data curation and investigation. YA: data curation and supervision. JAO: validation, writing-review and editing. HAL: software and visualization.

Corresponding authors

Correspondence to Mustapha Hassan Junaidu or Rabiu Abubakar Tafida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

All results are presented as they appeared and no data was fabricated.

Consent for publication

Every reference to related works has been carefully acknowledged and cited accordingly in the bibliography. All authors to the work have given consent to be acknowledged for their participation in the research work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junaidu, M.H., Liew, J.Y.C., Onimisi, M.Y. et al. Characteristics of hydrothermally synthesized SnS2 for thin film use. J Mater Sci: Mater Electron 35, 380 (2024). https://doi.org/10.1007/s10854-024-12178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12178-3

Navigation