Skip to main content
Log in

Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Zinc acetate is used as a raw material to synthesize the desired ZnO in hot solvent by controlling the amount of citric acid (CA) added. Notably, the amount of CA added has a significant relationship with the control of the morphology of ZnO. Spherical ZnO wrapped in nanosheets is synthesized through the secondary crystallization of Zn2+. The optical properties of the ZnO sample are tested through the degradation of organic pollutants. Notably, the photocatalytic properties of ZnO vary with the different amounts of CA added. Exposure of the active crystal face increases the photocatalytic activity of ZnO. In addition, the number of defects on the surface of the ZnO sample increases because of its large specific surface area, thus changing the bandgap of ZnO. Therefore, the resulting sample can respond under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.Y. Jiang, X.H. Zhang, Z.M. Yuan, J.C. Chen, B.B. Huang, D.D. Dionysiou, and G.H. Yang, Enhanced photocatalytic CO2 reduction via the synergistic effect between Ag and activated carbon in TiO2/AC–Ag ternary composite, Chem. Eng. J., 348(2018), p. 592.

    Article  CAS  Google Scholar 

  2. Z.Y. Jiang, W. Sun, W.K. Miao, Z.M. Yuan, G.H. Yang, F.G. Kong, T.J. Yan, J.C. Chen, B.B. Huang, C.H. An, and G.A. Ozin, Living atomically dispersed Cu ultrathin TiO2 nanosheet CO2 reduction photocatalyst, Adv. Sci., 6(2019), No. 15, art. No. 1900289.

  3. Q.L. Huang, Q.T. Zhang, S.S. Yuan, Y.C. Zhang, and M. Zhang, One-pot facile synthesis of branched Ag–ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst, Appl. Surf. Sci., 353(2015), p. 949.

    Article  CAS  Google Scholar 

  4. S. Girish Kumar and K.S.R. Koteswara Rao, Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications, Appl. Surf. Sci., 355(2015), p. 939.

    Article  CAS  Google Scholar 

  5. S.Q. Song, B. Cheng, N.S. Wu, A.Y. Meng, S.W. Cao, and J.G. Yu, Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3–rGO for photocatalytic elimination of pollutants, Appl. Catal. B, 181(2016), p. 71.

    Article  CAS  Google Scholar 

  6. Y.J. Liu, H.X. Liu, H.M. Zhou, T.D. Li, and L.N. Zhang, A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation, Appl. Surf. Sci., 466(2019), p. 133.

    Article  CAS  Google Scholar 

  7. S. Rehman, R. Ullah, A.M. Butt, and N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170(2009), No. 2–3, p. 560.

    Article  CAS  Google Scholar 

  8. C.G. Tian, Q. Zhang, A.P. Wu, M.J. Jiang, Z.L. Liang, B.J. Jiang, and H.G. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation, Chem. Commun., 48(2012), No. 23, p. 2858.

    Article  CAS  Google Scholar 

  9. E. Jang, D.W. Kim, S.H. Hong, Y.M. Park, and T.J. Park, Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor, Appl. Surf. Sci., 487(2019), p. 206.

    Article  CAS  Google Scholar 

  10. X.D. Wang, C.J. Summers, and Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nanooptoelectronics and nanosensor arrays, Nano Lett., 4(2004), No. 3, p. 423.

    Article  CAS  Google Scholar 

  11. S.T. Kochuveedu, Y.H. Jang, and D.H. Kim, A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications, Chem. Soc. Rev., 42(2013), No. 21, p. 8467.

    Article  CAS  Google Scholar 

  12. C. Jaramillo-Páez, J.A. Navío, M.C. Hidalgo, and M. Macías, High UV- photocatalytic activity of ZnO and Ag/ZnO synthesized by a facile method, Catal. Today, 284(2017), p. 121.

    Article  Google Scholar 

  13. H. Bouzid, M. Faisal, F.A. Harraz, S.A. Al-Sayari, and A.A. Ismail, Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity, Catal. Today, 252(2015), p. 20.

    Article  CAS  Google Scholar 

  14. R. Gupta, N.K. Eswar, J.M. Modak, and G. Madras, Ag and CuO impregnated on Fe doped ZnO for bacterial inactivation under visible light, Catal. Today, 300(2018), p. 71.

    Article  CAS  Google Scholar 

  15. C. Karunakaran and P. Vinayagamoorthy, Superparamagnetic core/shell Fe2O3/ZnO nanosheets as photocatalyst cum bactericide, Catal. Today, 284(2017), p. 114.

    Article  CAS  Google Scholar 

  16. X. Zong, C.H. Sun, H. Yu, Z.G. Chen, Z. Xing, D.L. Ye, G.Q. Lu, X.Y. Li, and L.Z. Wang, Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light, J. Phys. Chem. C, 117(2013), No. 10, p. 4937.

    Article  CAS  Google Scholar 

  17. K. Mahmood, H.W. Kang, S.B. Park, and H.J. Sung, Hydrothermally grown upright-standing nanoporous nanosheets of iodine-doped ZnO (ZnO:I) nanocrystallites for a high-efficiency dye-sensitized solar cell, ACS Appl. Mater. Interfaces, 5(2013), No. 8, p. 3075.

    Article  CAS  Google Scholar 

  18. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 453(2008), p. 638.

    Article  CAS  Google Scholar 

  19. K.B. Zhou, X. Wang, X.M. Sun, Q. Peng, and Y.D. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, J. Catal., 229(2005), No. 1, p. 206.

    Article  CAS  Google Scholar 

  20. E.S. Jang, J.-H. Won, S.-J. Hwang, and J.-H. Choy, Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity, Adv. Mater., 18(2006), No. 24, p. 3309.

    Article  CAS  Google Scholar 

  21. A. McLaren, T. Valdes-Solis, G.Q. Li, and S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity, J. Am. Chem. Soc., 131(2009), No. 35, p. 12540.

    Article  CAS  Google Scholar 

  22. Y.J. Liu, H.X. Liu, B.B. Huang, T.D. Li, and J.G. Wang, Nano needle decorated ZnO hollow spheres with exposed (0001) planes and their corrosion using acetic acid, CrystEngComm, 19(2017), No. 38, p. 5774.

    Article  CAS  Google Scholar 

  23. S. He, S.T. Zhang, J. Lu, Y.F. Zhao, J. Ma, M. Wei, D.G. Evans, and X. Duan, Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate, Chem. Commun., 47(2011), No. 38, p. 10797.

    Article  CAS  Google Scholar 

  24. J.P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Qin, X.Y. Zhang, and Y. Dai, Oxygen vacancy induced bandgap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Appl. Mater. Interfaces, 4(2012), No. 8, p. 4024.

    Article  CAS  Google Scholar 

  25. E. Grabowska, J.W. Sobczak, M. Gazda, and A. Zaleska, Surface properties and visible light activity of W–TiO2 photocatalysts prepared by surface impregnation and sol-gel method, Appl. Catal. B, 117–118(2012), p. 351.

    Article  Google Scholar 

  26. X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331(2011), No. 6018, p. 746.

    Article  CAS  Google Scholar 

  27. X.J. Bai, L. Wang, R.L. Zong, Y.H. Lv, Y.Q. Sun, and Y.F. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization, Langmuir, 29(2013), No. 9, p. 3097.

    Article  CAS  Google Scholar 

  28. J.C. Wang, P. Liu, X.Z. Fu, Z.H. Li, W. Han, and X.X. Wang, Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes, Langmuir, 25(2009), No. 2, p. 1218.

    Article  CAS  Google Scholar 

  29. J. Wang, Y. Xia, Y. Dong, R.S. Chen, L. Xiang, and S. Komarneni, Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst, Appl. Catal. B, 192(2016), p. 8.

    Article  CAS  Google Scholar 

  30. H.F. Greer, W.Z. Zhou, G. Zhang, and H. Ménard, Nanocone decorated ZnO microspheres exposing the (0001) plane and enhanced photocatalytic properties, Adv. Mater. Interfaces, 4(2017), No. 13, art. No. 1601238.

  31. V.K. LaMer and R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc., 72(1950), No. 11, p. 4847.

    Article  CAS  Google Scholar 

  32. H. Reiss, The growth of uniform colloidal dispersions, J. Chem. Phys., 19(1951), No. 4, p. 482.

    Article  CAS  Google Scholar 

  33. S.G. Kwon and T. Hyeon, Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods, Small, 7(2011), No. 19, p. 2685.

    Article  CAS  Google Scholar 

  34. H. Wang, C.C. Wang, Q.F. Chen, B.S. Ren, R.F. Guan, X.F. Cao, X.P. Yang, and R. Duan, Interface-defect-mediated photocatalysis of mesocrystalline ZnO assembly synthesized in-situ via a template-free hydrothermal approach, Appl. Surf. Sci., 412(2017), p. 517.

    Article  CAS  Google Scholar 

  35. O. Bechambi, M. Chalbi, W. Najjar, and S. Sayadi, Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity, Appl. Surf. Sci., 347(2015), p. 414.

    Article  CAS  Google Scholar 

  36. Y. Haldorai, A. Rengaraj, C.H. Kwak, Y.S. Huh, and Y.-K. Han, Fabrication of nano TiO2@graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants, Synth. Met., 198(2014), p. 10.

    Article  CAS  Google Scholar 

  37. X.X. Wei, H.T. Cui, S.Q. Guo, L.F. Zhao, and W. Li, Hybrid BiOBr–TiO2 nanocomposites with high visible light photocatalytic activity for water treatment, J. Hazard. Mater., 263(2013), p. 650.

    Article  CAS  Google Scholar 

  38. R. Ghosh Chaudhuri and S. Paria, Visible light induced photocatalytic activity of sulfur doped hollow TiO2 nanoparticles, synthesized via a novel route, Dalton Trans., 43(2014), No. 14, p. 5526.

    Article  CAS  Google Scholar 

  39. L.O. de B. Benetoli, B.M. Cadorin, C. da S. Postiglione, I.G. de Souza, and N.A. Debacher, Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor, J. Braz. Chem. Soc., 22(2011), No. 9, p. 1669.

    Article  CAS  Google Scholar 

  40. C.-H. Wu and J.-M. Chern, Kinetics of photocatalytic decomposition of methylene blue, Ind. Eng. Chem. Res., 45(2006), No. 19, p. 6450.

    Article  CAS  Google Scholar 

  41. H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244.

    Article  CAS  Google Scholar 

  42. S. Gao, W.Y. Yang, J. Xiao, B. Li, and Q. Li, Creation of passivated Nb/N p-n co-doped ZnO nanoparticles and their enhanced photocatalytic performance under visible light illumination, J. Mater. Sci. Technol., 35(2019), No. 4, p. 610.

    Article  Google Scholar 

  43. X.W. Zhang, X.L. Zhang, X. Wang, L.Q. Liu, J.H. Ye, and D.F. Wang, Enhancing the photocatalytic activity and photostability of zinc oxide nanorod arrays via graphitic carbon mediation, Chin. J. Catal., 39(2018), No. 5, p. 973.

    Article  CAS  Google Scholar 

  44. W.L. Yu, J.F. Zhang, and T.Y. Peng, New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts, Appl. Catal. B, 181(2016), p. 220.

    Article  CAS  Google Scholar 

  45. R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51602164), the Key Research Project of Shandong Province, China (No. 2017GGX40121), the Young Doctor Cooperative Fund Project (No. 2019BSHZ005), and the Scientific Research Innovation Team in Colleges and Universities of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-xia Liu or Xu-ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hx., Teng, My., Wei, Xg. et al. Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance. Int J Miner Metall Mater 28, 495–502 (2021). https://doi.org/10.1007/s12613-020-2033-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2033-0

Keywords

Navigation