Skip to main content
Log in

Ethanol gas sensing properties of electron beam deposited Zn-doped NiO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present manuscript reports ethanol sensing properties of electron beam evaporated 20 wt.% Zn metal ions substituted NiO thin films. The prepared films are subjected to XRD, FESEM, EDS, AFM and XPS characterization. The structural, morphological, elemental and chemical properties are clear evidence of the successful deposition of Zn modified NiO coatings. The substrate temperature effect and role of Zn doping on the ethanol sensing properties are systematically investigated. The sensors developed with these film materials are tested using different volatile organic compounds at room temperature as operating temperature. The sensing studies revealed that the samples have exhibited enhanced sensing properties (response = 129, fast response and recovery times (25/10 s)) for 5 ppm of ethanol testing. The enhanced number of adsorbed oxygen and oxygen vacancies induced by doping Zn ions is primarily responsible for better ethanol sensing characteristics. The plausible ethanol sensing mechanism for improved sensing activity of Zn modified NiO thin films is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. X. Zhu, J. Zhang, Q. Xie et al., High-Sensitivity and ultrafast-response ethanol sensors based on graphene oxide. ACS Appl. Mater. Interfaces 12, 38708–38713 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. T. Tharsika, M. Thanihaichelvan, A.S.M.A. Haseeb et al., Highly sensitive and selective ethanol sensor based on zno nanorod on SnO2 thin film fabricated by spray pyrolysis. Front. Mater. (2019). https://doi.org/10.3389/fmats.2019.00122

    Article  Google Scholar 

  3. S. Onuki, J.A. Koziel, W.S. Jenks et al., Taking ethanol quality beyond fuel grade: a review. J. Inst. Brew. 122, 588–598 (2016)

    Article  CAS  Google Scholar 

  4. A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42, 15119–15141 (2016)

    Article  CAS  Google Scholar 

  5. G. Dharmalingam, R. Sivasubramaniam, S. Parthiban, Quantification of ethanol by metal-oxide-based resistive sensors: a review. J. Electron. Mater. 49, 3009–3024 (2020)

    Article  ADS  CAS  Google Scholar 

  6. P. Srinivasan, M. Ezhilan, A.J. Kulandaisamy et al., Room temperature chemiresistive gas sensors: challenges and strategies—a mini review. J. Mater. Sci. Mater. Electron. 30, 15825–15847 (2019)

    Article  CAS  Google Scholar 

  7. S.F. Memon, R. Wang, B. Strunz et al., A review of optical fibre ethanol sensors: current state and future prospects. Sensors (2022). https://doi.org/10.3390/s22030950

    Article  PubMed  PubMed Central  Google Scholar 

  8. L.Y. Gai, R.P. Lai, X.H. Dong et al., Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 41, 1818–1842 (2022)

    Article  CAS  Google Scholar 

  9. M.H. Mamat, N. Parimon, A.S. Ismail et al., Synthesis, structural and optical properties of mesostructured, X-doped NiO (x = Zn, Sn, Fe) nanoflake network films. Mater. Res. Bull. (2020). https://doi.org/10.1016/j.materresbull.2020.110860

    Article  Google Scholar 

  10. J. Xu, S. Li, L. Li et al., Facile fabrication and superior gas sensing properties of spongelike Co-doped ZnO microspheres for ethanol sensors. Ceram. Int. 44, 16773–16780 (2018)

    Article  CAS  Google Scholar 

  11. Right to Know Hazardous Substance Fact Sheet, http://nj.gov/health/workplacehealthandsafety/right-to-.

  12. C.N. Wang, Y.L. Li, F.L. Gong et al., Advances in doped ZnO nanostructures for gas sensor. Chem. Rec. 20, 1553–1567 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. Z.H. Ma, R.T. Yu, J.M. Song, Facile synthesis of Pr-doped In2O3 nanoparticles and their high gas sensing performance for ethanol. Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2019.127377

    Article  PubMed  PubMed Central  Google Scholar 

  14. C. Wang, X. Cui, J. Liu et al., Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers. ACS Sens. 1, 131–136 (2016)

    Article  CAS  Google Scholar 

  15. Y. Yin, Y. Shen, S. Zhao et al., Effect of noble metal elements on ethanol sensing properties of ZnSnO3 nanocubes. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.161409

    Article  Google Scholar 

  16. S.H. Yan, S.Y. Ma, W.Q. Li et al., Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance. Sens. Actuators B Chem. 221, 88–95 (2015)

    Article  ADS  CAS  Google Scholar 

  17. D. Maity, K. Rajavel, R.T.R. Kumar, Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor. Sens. Actuators B Chem. 261, 297–306 (2018)

    Article  CAS  Google Scholar 

  18. D. Degler, U. Weimar, N. Barsan, Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sens. 4, 2228–2249 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. K. Govardhan, G.A. Nirmala, Metal/metal oxide doped semiconductor based metal oxide gas sensors - A review. Sens. Lett. 14, 741–750 (2016)

    Article  Google Scholar 

  20. H.S. Rasheed, H.I. Abdulgafour, F.M. Hassan et al., Synthesis, characterization, and gas-sensing performance of macroporous Zn-doped NiO thin films for ammonia gas detection. J. Mater. Sci. Mater. Electron. 33, 18187–18198 (2022). https://doi.org/10.1007/s10854-022-08675-y

    Article  CAS  Google Scholar 

  21. K. Singh, R.C. Singh, S. Sharma, Methanol sensing using Zn doped NiO nanoparticles. J. Phys. 1, 012034 (1849)

    Google Scholar 

  22. X. Li, X. Sun, X. Hu et al., Enhanced gas-sensing performance of Fe-doped ordered mesoporous NiO with long-range periodicity. J. Phys. Chem. C 119, 3228–3237 (2015)

    Article  Google Scholar 

  23. M. Haq, Z. Zhang, Z. Wen et al., Humidity sensor based on mesoporous Al-doped NiO ultralong nanowires with enhanced ethanol sensing performance. J. Mater. Sci. Mater. Electron. 30, 7121–7134 (2019)

    Article  Google Scholar 

  24. Q. Wang, J. Bai, Q. Hu et al., W-doped NiO as a material for selective resistive ethanol sensors. Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2020.127668

    Article  PubMed  PubMed Central  Google Scholar 

  25. C. Yan, H. Lu, J. Gao et al., Synthesis of porous NiO-In2O3composite nanofibers by electrospinning and their highly enhanced gas sensing properties. J. Alloys Compd. 699, 567–574 (2017)

    Article  CAS  Google Scholar 

  26. B.J. Rani, G. Ravi, R. Yuvakkumar et al., Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications. J. Solgel Sci. Technol. 89, 500–510 (2019)

    Article  CAS  Google Scholar 

  27. S. Dewan, M. Tomar, R.P. Tandon et al., Zn doping induced conductivity transformation in NiO films for realization of p-n homo junction diode. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4984580

    Article  Google Scholar 

  28. T. Tangcharoen, W. Klysubun, C. Kongmark, Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations. J. Mol. Struct. 1156, 524–533 (2018)

    Article  ADS  CAS  Google Scholar 

  29. K. GangaReddy, P. Nagaraju, G.L.N. Reddy et al., Growth and characterization of electron beam evaporated NiO thin films for room temperature formaldehyde sensing. Sens. Actuators A Phys. (2022). https://doi.org/10.1016/j.sna.2022.113876

    Article  Google Scholar 

  30. K. GangaReddy, M.V.R. Reddy, Physical vapour deposition of Zn2+ doped NiO nanostructured thin films for enhanced selective and sensitive ammonia sensing. Mater. Sci. Semicond. Process. 154, 107198 (2023)

    Article  CAS  Google Scholar 

  31. N. Das, J. Chakrabartty, S. Farhad, A. Sen Gupta, E. Ikball Ahamed, K. Rahman, A. Wafi, A. Alkahtani, M. Matin, N. Amin, Effect of substrate temperature on the properties of RF sputtered CdS thin films for solar cell applications. Res. Phys. 17, 103132 (2020). https://doi.org/10.1016/j.rinp.2020.103132

    Article  Google Scholar 

  32. J.H. Lee, Y.W. Noh, I.S. Jin et al., Efficient planar heterojunction perovskite solar cells employing a solution-processed Zn-doped NiOX hole transport layer. Electrochim. Acta 284, 253–259 (2018)

    Article  CAS  Google Scholar 

  33. M. Kumar, B. Singh, P. Yadav et al., Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique. Ceram. Int. 43, 3562–3568 (2017)

    Article  CAS  Google Scholar 

  34. S. Cao, L. Peng, B. Liu et al., Hydrothermal synthesis of novel lotus-root slice NiO architectures with enhanced gas response properties. J. Alloys Compd. 798, 478–483 (2019)

    Article  CAS  Google Scholar 

  35. Q. Li, W. Zeng, Y. Li, NiO-based gas sensors for ethanol detection: recent progress. J. Sens. (2022). https://doi.org/10.1155/2022/1855493

    Article  Google Scholar 

  36. C. Su, L. Zhang, Y. Han et al., Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sens. Actuators B Chem. (2019). https://doi.org/10.1016/j.snb.2019.126642

    Article  Google Scholar 

  37. S.M. Majhi, G.K. Naik, H.J. Lee et al., Au@NiO core-shell nanoparticles as a p-type gas sensor: novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sens. Actuators B Chem. 268, 223–231 (2018)

    Article  CAS  Google Scholar 

  38. S.K.J. Shailja, R.C. Singh, Highly sensitive and selective ethanol gas sensor based on Ga-doped NiO nanoparticles. J. Mater. Sci. Mater. Electron. 32, 11274–11290 (2021)

    Article  CAS  Google Scholar 

  39. GangaReddy K, Ramana Reddy M v. Room temperature ammonia gas sensing properties of NiO thin film. In: AIP Conference Proceedings. American Institute of Physics Inc., 2020. Epub ahead of print 12 October 2020. DOI: https://doi.org/10.1063/5.0019512.

  40. Adilakshmi G, Sivasankar Reddy A, Sreedhara Reddy P, et al. Electron beam evaporated nanostructure WO3 films for gas sensor application. Mater Sci Eng B Solid State Mater Adv Technol; 273. Epub ahead of print 1 November 2021. DOI: https://doi.org/10.1016/j.mseb.2021.115421.

  41. I. Muniyandi, G.K. Mani, P. Shankar et al., Effect of nickel doping on structural, optical, electrical and ethanol sensing properties of spray deposited nanostructured ZnO thin films. Ceram. Int. 40, 7993–8001 (2014)

    Article  CAS  Google Scholar 

  42. C. Stella, N. Soundararajan, K. Ramachandran, Undoped and Mn-doped Co3O4 nanorods for ethanol sensing. J. Mater. Sci. Mater. Electron. 26, 4178–4184 (2015)

    Article  CAS  Google Scholar 

  43. L. Chen, Q. Yu, C. Pan et al., Chemiresistive gas sensors based on electrospun semiconductor metal oxides: a review. Talanta (2022). https://doi.org/10.1016/j.talanta.2022.1227

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Head, Department of Physics, Osmania University for providing the necessary experimental facilities to carry out this work. One of the authors (KGR) thanks the University Grants Commission (UGC), New Delhi, India for providing financial assistance in the form of a National Eligibility Test- Junior Research Fellow (NET-JRF) fellowship during the research work. One of the authors (MVRR) thanks Department of Science & Technology- Science and Engineering Research Board (DST-SERB) (File No: EMR/2017/002651) for providing the necessary financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

KG: Conceptualization, Methodology, Investigation, Visualization, Data curation, Writing-Original draft preparation. MVRR: Resources, Writing-Reviewing and Editing, Supervision.

Corresponding author

Correspondence to K. Gangareddy.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2021 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangareddy, K., Reddy, M.V.R. Ethanol gas sensing properties of electron beam deposited Zn-doped NiO thin films. J Mater Sci: Mater Electron 35, 408 (2024). https://doi.org/10.1007/s10854-024-12135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12135-0

Navigation