Skip to main content
Log in

Tuning of electronic properties of co-evaporated Ag:SnS thin films for heterojunction devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co-evaporation method was used to deposit Ag-doped SnS thin films on soda lime glass substrates at 300 °C. The Ag doping concentration was systematically varied in the range of 0 to 9 wt% of SnS. The effect of Ag doping concentration on the morphological, structural, optical and electrical properties of the as-deposited films has been investigated. SEM and AFM studies showed that the surface morphology is influenced significantly by Ag doping and the surface roughness decreased from 97 nm to 59 nm with an increase in Ag doping level. The existence of Sn, S, and Ag in the deposited films was confirmed by Energy Dispersive Spectroscopy. The formation of SnS without the presence of any impurity phases was confirmed by XRD measurements and Raman analysis. The optical bandgap decreases from 1.97 to 1.83 eV with the increase in Ag doping. The electrical studies revealed that all the deposited films demonstrated p-type conductivity. A significant increase in mobility from 197 to 1360 cmV−1 s−1 was observed upon the increase in the doping concentration of Ag. Heterojunction devices were fabricated with 9% Ag:SnS thin film as the p-type layer and RF sputtered Al:ZnO thin film as the n-layer on the FTO substrate. The knee voltage of the diode was 0.9 V with an ideality factor of 8.7 and a rectification ratio of 23.9 at ± 2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data is used for the reported research work.

References

  1. T.D. Nguyen, V.T. Dang, N.M. Hung et al., Surf. Interfaces (2021). https://doi.org/10.1016/j.surfin.2021.101151

    Article  Google Scholar 

  2. D. Alagarasan, S. Varadharajaperumal, R. Aadhavan et al., Sens. Actuator A Phys. 349, 8 (2023). https://doi.org/10.1016/j.sna.2022.114065

    Article  CAS  Google Scholar 

  3. A.P. Sreekala, B. Krishnan, R.F.C. Pelaes, D.A. Avellaneda, M.I.M. Palma, S. Shaji, Colloid Surf. A Physicochem. Eng. Asp. 639, 14 (2022). https://doi.org/10.1016/j.colsurfa.2022.128382

    Article  CAS  Google Scholar 

  4. A.P. Sreekala, B. Krishnan, R.F.C. Pelaes, D.A. Avellaneda, J.A. Aguilar-Martinez, S. Shaji, Appl. Surf. Sci. 609, 13 (2023). https://doi.org/10.1016/j.apsusc.2022.155277

    Article  CAS  Google Scholar 

  5. Z.H. Ye, H. Yu, J.H. Wei, Y. Xie, J. Lumines. 253, 7 (2023). https://doi.org/10.1016/j.jlumin.2022.119473

    Article  CAS  Google Scholar 

  6. S. Sebastian, S. Vinoth, K.H. Prasad et al., Appl. Phys. A Mater. Sci. Process. 126, 12 (2020). https://doi.org/10.1007/s00339-020-03959-8

    Article  CAS  Google Scholar 

  7. U. Chalapathi, B. Poornaprakash, S.H. Park, Sol Energy. 139, 238 (2016). https://doi.org/10.1016/j.solener.2016.09.046

    Article  ADS  CAS  Google Scholar 

  8. R.E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, Y. Golan, RSC Adv. 6, 5848 (2016). https://doi.org/10.1039/c5ra23092f

    Article  ADS  CAS  Google Scholar 

  9. S. Gedi, V.R.M. Reddy, T.R.R. Kotte, S.H. Kim, C.W. Jeon, Ceram. Int. 42, 19027 (2016). https://doi.org/10.1016/j.ceramint.2016.09.059

    Article  CAS  Google Scholar 

  10. S.R. Suryawanshi, S.S. Warule, S.S. Patil, K.R. Patil, ACS Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am405039j

    Article  PubMed  Google Scholar 

  11. M. Messaoudi, S. Boudour, Microsc. Res. Tech. 86, 342 (2023). https://doi.org/10.1002/jemt.24275

    Article  CAS  PubMed  Google Scholar 

  12. M.A. Olgar, A. Ciri, M. Tomakin, R. Zan, J. Mol. Struct. 1241, 8 (2021). https://doi.org/10.1016/j.molstruc.2021.130631

    Article  CAS  Google Scholar 

  13. A. Javed, N. Khan, S. Bashir, M. Ahmad, M. Bashir, Mater. Chem. Phys. 246, 9 (2020). https://doi.org/10.1016/j.matchemphys.2020.122831

    Article  CAS  Google Scholar 

  14. D. Alagarasan, S.S. Hegde, S. Varadharajaperumal et al., Phys. Scr. 97, 13 (2022). https://doi.org/10.1088/1402-4896/ac6d19

    Article  CAS  Google Scholar 

  15. Q.V. Luyen, P.T. Bui, V.T. Chu et al., Sens. Actuator A Phys. (2022). https://doi.org/10.1016/j.sna.2021.113319

    Article  Google Scholar 

  16. B.H. Baby, A.M. Thomas, E.G. Amrutha, D.B. Mohan, Sol. Energy 205, 446 (2020). https://doi.org/10.1016/j.solener.2020.05.076

    Article  ADS  CAS  Google Scholar 

  17. B. Barman, K.V. Bangera, Superlattices Microstruct. (2019). https://doi.org/10.1016/j.spmi.2019.106215

    Article  Google Scholar 

  18. K.S. Kumar, A.G. Manohari, S. Dhanapandian, T. Mahalingam, Mater. Lett. 131, 167 (2014). https://doi.org/10.1016/j.matlet.2014.05.186

    Article  CAS  Google Scholar 

  19. E. Jose, M. Mohan, M.A.G. Namboothiry, M.C.S. Kumar, J. Alloy Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154507

    Article  Google Scholar 

  20. P. Nisha, P. Kumar, R.S. Sarkar Katiyar, Opt. Mater. 133, 7 (2022). https://doi.org/10.1016/j.optmat.2022.112792

    Article  CAS  Google Scholar 

  21. F. Aslan, F. Arslan, A. Tumbul, A. Goktas, Opt. Mater. (2022). https://doi.org/10.1016/j.optmat.2022.112270

    Article  Google Scholar 

  22. S. Acharya, N. Pradhan, J. Phys. Chem. C 115, 19513 (2011). https://doi.org/10.1021/jp2052147

    Article  CAS  Google Scholar 

  23. B. Singh, J. Singh, R. Kaur, R.K. Moudgil, S.K. Tripathi, RSC Adv. 7, 53951 (2017). https://doi.org/10.1039/c7ra02904g

    Article  ADS  CAS  Google Scholar 

  24. D. Alagarasan, S. Varadharajaperumal, K.D.A. Kumar et al., Opt. Mater. 121, 11 (2021). https://doi.org/10.1016/j.optmat.2021.111489

    Article  CAS  Google Scholar 

  25. B.H. Baby, D.B. Mohan, Sol. Energy 194, 61 (2019). https://doi.org/10.1016/j.solener.2019.10.049

    Article  ADS  CAS  Google Scholar 

  26. T.S. Reddy, M.C.S. Kumar, RSC Adv. 6, 95680 (2016). https://doi.org/10.1039/c6ra20129f

    Article  ADS  CAS  Google Scholar 

  27. E. Jose, M.C.S. Kumar, J. Alloy Compd. 712, 649 (2017). https://doi.org/10.1016/j.jallcom.2017.04.097

    Article  CAS  Google Scholar 

  28. B.H. Kumar, M.C.S. Kumar, Sens. Actuator A Phys. (2019). https://doi.org/10.1016/j.sna.2019.111643

    Article  Google Scholar 

  29. R. Swapna, M.C.S. Kumar, Mater. Sci. Eng. B Adv. Funct. Solid State Mater. 178, 1032 (2013). https://doi.org/10.1016/j.mseb.2013.06.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Neju Mathew Philip would like to acknowledge Department of Science and Technology, Government of India for the research fellowship through INSPIRE Fellowship (IF180054).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: NMP, MCSK; Methodology: NMP, MCSK; Formal analysis and investigation: NMP; Writing—original draft preparation: NMP; Supervision: MCSK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. C. Santhosh Kumar.

Ethics declarations

Competing interest

The authors declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval

This article does not contain any studies involving animal or human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, N.M., Kumar, M.C.S. Tuning of electronic properties of co-evaporated Ag:SnS thin films for heterojunction devices. J Mater Sci: Mater Electron 35, 323 (2024). https://doi.org/10.1007/s10854-024-12078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12078-6

Navigation