Skip to main content
Log in

Quantitative analysis of Ag-doped SnS thin films for solar cell applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work reports the changes in the properties of Ag-doped SnS thin films (SnS:Ag), and CdS/SnS solar cells with an Ag dopant concentration in the absorber varied from 0 to 6 wt.% in steps of 3 wt.% prepared by the nebulizer-assisted spray pyrolysis method (NSP). X-ray diffraction (XRD) studies confirm the SnS:Ag (3 wt.%) thin film has a higher crystallite size than the undoped and SnS:Ag (6 wt.%) thin film. An atomic force microscope (AFM) image shows SnS:Ag (3 wt.%) film possesses larger-sized grains than other samples. The energy-dispersive X-ray analysis (EDS) confirms the presence of the constituent elements in the SnS:Ag thin films. PL analysis revealed the films possess the band edge as well as the other defect-related emissions of SnS. The Ag doping facilitates the tunability in absorption and decreases in optical bandgap for the SnS:Ag (3 wt.%) film. Hall measurements provide the low resistivity of 3.31 Ωcm, the high charge carrier concentration of 1.56 × 1017 cm−3, and high mobility of 12.1 cm2 V−1 s−1 for 3 wt.% Ag-doped SnS film. The better photovoltaic conversion efficiency of 0.285% was observed for the device prepared with SnS:Ag (3 wt.%) thin film compared to other samples due to enhanced absorption, optimum bandgap, and better electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Yuan, H. Deng, X. Yang, Hu Chao, J. Khan, W. Ye, J. Tang, H. Song, Post-surface selenization for high performance Sb2S3, planar thin film solar cells. ACS Photonics 4, 2862–2870 (2017)

    Google Scholar 

  2. R. Bai, D. Kumar, S. Chaudhary, D.K. Pandya, Highly crystalline p-PbS thin films with tunable optical and hole transport parameters by chemical bath deposition. Acta Mater. 131, 11–21 (2017)

    Google Scholar 

  3. S. Sebastian, I. Kulandaisamy, A.M.S. Arulanantham, S. Valanarasu, A. Kathalingam, A. JesuJebathew, Mohd. Shkir, M. Karunakaran, Influence of Al doping concentration on the opto-electronic chattels of SnS thin films readied by NSP. Opt. Quantum Electron. 51, 100–109 (2019)

    Google Scholar 

  4. M.S. Mahdi, N.M. Ahmed, A. Hmood, K. Ibrahim, M. Bououdina, Comprehensive photoresponse study on high performance and flexible π-SnS photodetector with near-infrared response. Mater. Sci. Semicond. Process 100, 270–274 (2019)

    Google Scholar 

  5. M. Sahin, H. Safak, N. Tugluoglu, S. Karadeniz, Temperature dependence of current–voltage characteristics, of Ag/p-SnS Schottky barrier diodes. Appl. Surf. Sci. 242, 412–418 (2005)

    ADS  Google Scholar 

  6. S.F. Wang, W. Wang, W.K. Fong, Y. Yu, C. Surya, Tin compensation for the SnS based optoelectronic devices. Sci. Rep. 7, 39704–39714 (2017)

    ADS  Google Scholar 

  7. C. Rana, S.R. Bera, S. Saha, Growth of SnS nanoparticles and its ability as ethanol gas sensor. J. Mater. Sci. Mater. Electron. 30, 2016–2029 (2019)

    Google Scholar 

  8. J. Ge, J. Jiang, P.X. Yang, C. Peng, Z. Huang, S. Zuo, L. Yang, J. Chu, A 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnS4/Mo thin film solar cell. Solar Energy Mater. Solar Cells 125, 20–26 (2014)

    Google Scholar 

  9. P.K. Nair, E. Barrios-Salgado, J. Capistrán, M.L. Ramón, M.T.S. Nair, R.A. Zingaro, PbSe thin films in all-chemically deposited solar cells. J. Electrochem. Soc. 157, D528–D538 (2010)

    Google Scholar 

  10. Y. Tian, Y. Zhang, Y. Lin, K. Gao, Y. Zhang, K. Liu, Q. Yang, X. Zhou, D. Qin, H. Wu, Y. Xia, Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer. J. Nanopart. Res. 15, 2053–2062 (2013)

    ADS  Google Scholar 

  11. S. Lee, E.S. Lee, T.Y. Kim, J.S. Cho, Y.J. Eo, J.H. Yun, A. Cho, Effect of annealing treatment on CdS/CIGS thin film solar cells depending on different CdS deposition temperatures. Solar Energy Mater. Solar Cells 141, 299–308 (2015)

    Google Scholar 

  12. X. Mathew, J.P. Enriquez, A. Romeo, A.N. Tiwari, CdTe/CdS solar cells on flexible substrates. Sol. Energy 77, 831–838 (2004)

    ADS  Google Scholar 

  13. N. Koteeswara Reddy, K. Ramesh, R. Ganesan, K.T. Ramakrishna Reddy, K.R. Gunasekhar, E.S.R. Gopal, Synthesis and characterization of co-evaporated tin sulphide thin films. Appl. Phys. A 83, 133–138 (2006)

    ADS  Google Scholar 

  14. V. Kumar, A.Y. Shin, J. Kim, Photovoltaic behavior of the room temperature grown RF-Sputtered SnS thin films. Opt. Mater. 88, 594–600 (2019)

    ADS  Google Scholar 

  15. N. Spalatu, J. Hiie, R. Kaupmees, O. Volobujeva, J. Krustok, O.A. Ilona, M. Krunks, Postdeposition processing of SnS thin films and solar cells: prospective strategy to obtain large, sintered, and doped SnS grains by recrystallization in the presence of a metal halide flux. ACS Appl. Mater. Interfaces 11, 17539–17554 (2019)

    Google Scholar 

  16. M. Reghima, A. Akkari, C. Guasch, N. Kamoun-Turki, Effect of indium doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition. Renew. Sustain. Energy 4, 011602–011614 (2012)

    Google Scholar 

  17. S. Zhang, S. Cheng, Thermally evaporated SnS:Cu thin films for solar cells. IET Micro Nano Lett. 6, 559–562 (2011)

    Google Scholar 

  18. S. Zhang, S.Y. Cheng, H.J. Jia, H.F. Zhou, Preparation and characterization of aluminium-doped SnS thin films. Adv. Mater. Res. Trans. Tech. Publ. 418, 712–716 (2012)

    Google Scholar 

  19. M. Reghima, A. Akkari, C. Guasch, N. Kamoun-Turki, Structural, optical, and electrical properties of SnS:Ag thin films. J. Electron. Mater. 44, 4392–4399 (2015)

    ADS  Google Scholar 

  20. V.F. Gremenok, V.Y. Rud, Y.V. Rud, S.A. Bashkirov, V.A. Ivanov, Photosensitive thin-film In/p-PbxSn1−xS Schottky barriers: fabrication and properties. Semiconductors 45, 1053–1058 (2011)

    ADS  Google Scholar 

  21. B. Zhou, S. Li, W. Li, J. Li, X. Zhang, S. Lin, Z. Chen, Y. Pei, Thermoelectric properties of SnS with Na-doping. ACS Appl. Mater. Interfaces 39, 34033–34041 (2017)

    Google Scholar 

  22. O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, Synthesis and characterization of Ag- and Sb-Doped ZnO nanorods by a facile hydrothermal method. J. Phys. Chem. 114, 12401–12408 (2010)

    Google Scholar 

  23. M. Patel, A. Ray, Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells. RSC Adv. 4, 39343–39350 (2014)

    Google Scholar 

  24. Y. Yan, M.M. Al-Jassim, S.H. Wei, Doping of ZnO by group-IB elements. Appl. Phys. Lett. 89, 181912–181912 (2006)

    ADS  Google Scholar 

  25. S.A. Hosseini, K. Ranjbar, R. Dehmolaei, A.R. Amirani, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloys Compd. 640, 408–415 (2015)

    Google Scholar 

  26. Y. Yongli, C. Shuying, Preparation of SnS∶Ag thin films by pulse electrodeposition. J. Semicond. 4177, 1–5 (2008)

    Google Scholar 

  27. S. Cheng, G. Conibeer, Physical properties of very thin SnS films deposited by thermal evaporation. Thin Solid Films 520, 837–841 (2011)

    ADS  Google Scholar 

  28. P. Malkeshkumar, R. Abhijit, Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells. RSC Adv. 4, 39343–39350 (2014)

    Google Scholar 

  29. S.H. Chaki, H.J. Joshi, J.P. Tailor, M.P. Deshpande, Study of SnS2 thin film deposited by spin coating technique. Mater. Res. Express 4, 076402 (2017)

    ADS  Google Scholar 

  30. M. Patel, A. Ray, Evaluation of back contact in spray deposited SnS thin film solar cells by impedance analysis. ACS Appl. Mater. Interfaces 6, 10099–10106 (2014)

    Google Scholar 

  31. A.M.S. Arulanantham, S. Valanarasu, K. Jeyadheepan, A. Kathalingam, I. Kulandaisamy, Effect of sulfur concentration on the properties of tin disulfide thin films by nebulizer spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28, 18675–18685 (2017)

    Google Scholar 

  32. J.M. Gonzalez, K. Nguyen-Cong, B.A. Steele, I.I. Oleynik, Novel phases and superconductivity of tin sulfide compounds. J. Chem. Phys. 148, 194701 (2018)

    ADS  Google Scholar 

  33. B.H. Baby, D.B. Mohan, Characterization studies of heavily doped Ag–SnS thin films prepared by magnetron co-sputtering technique. Mater. Today Proc. 26, 108–113 (2020)

    Google Scholar 

  34. K. SanthoshKumar, A. GowriManohari, S. Dhanapandian, T. Mahalingam, Physical properties of spraypyrolyzed Ag-doped SnS thin films for opto-electronic applications. Mater. Lett. 131, 167–170 (2014)

    Google Scholar 

  35. M. Devika, N. Koteeswara Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T. Ramakrishna Reddya, Low resistive micrometer-thick SnS:Ag films for optoelectronic applications. J. Electrochem. Soc. 153, G727–G733 (2006)

    Google Scholar 

  36. A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011)

    ADS  Google Scholar 

  37. A. Salem, S.S. Ahmed, S.N. Alamri, structural and optical properties of nanocrystalline tin sulphide thin films deposited by thermal evaporation. Indian J. Pure Appl. Phys. 53, 696–700 (2015)

    Google Scholar 

  38. R. Thomas, T. Mathavan, M.A. Jothirajan, H.H. Somaily, H.Y. Zahranc, I.S. Yahia, An effect of lanthanum doping on physical characteristics of FTO thin films coated by nebulizer spray pyrolysis technique. Opt. Mater. 99, 109518–109528 (2020)

    Google Scholar 

  39. P.A. Nwofe, K.R. Reddy, J.K. Tan, I. Forbes, R.W. Miles, Thickness dependent optical properties of thermally evaporated SnS thin films. Phys. Proc. 25, 150–157 (2012)

    ADS  Google Scholar 

  40. S. Sebastian, I. Kulandaisamy, A.M.S. Arulanantham, S. Valanarasu, A. Kathalingam, M. Shkir, S. AlFaify, Enhancement in photovoltaic properties of Nd:SnS films prepared by low-cost NSP method. Rare Met. (2019). https://doi.org/10.1007/s12598-019-01295-2

    Article  Google Scholar 

  41. K. SanthoshKumar, C. Manoharan, S. Dhanapandian, A. GowriManohari, T. Mahalingam, Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik 15, 3996–4000 (2014)

    ADS  Google Scholar 

  42. T.H. Sajeesh, N. Poornima, C. Sudha Kartha, K.P. Vijayakumar, Unveiling the defect levels in SnS thin films for photovoltaic applications using photoluminescence technique. Phys. Status Solidi A 8, 1934–1939 (2010)

    ADS  Google Scholar 

  43. K. Santhosh Kumar, A. Gowri Manohari, T. Chaogang Lou, S.D. Mahalingam, Influence of Cu dopant on the optical and electrical properties of spray deposited tin sulphide thin films. Vacuum 12, 226–229 (2016)

    ADS  Google Scholar 

  44. H. Kafashan, Comparison the effects of Se and Te inclusion on the physical and electrochemical properties of SnS thin films. Mater. Sci. Semicond. Process. 88, 148–160 (2018)

    Google Scholar 

  45. S.-Y. Hong-JieJia, Wu Xin-Kun, Y.-L. Yang, Effect of anneal temperature on electrical and optical properties of SnS:Ag thin films. Nat. Sci. 2, 197–200 (2010)

    Google Scholar 

  46. R. Fadavieslam, Effect of Ag doping on the physical properties of tin-sulfide thin films for optoelectronic applications prepared by spray pyrolysis. Appl. Phys. A 124, 596–603 (2018)

    ADS  Google Scholar 

  47. A.S. Obaid, M.A. Mahdi, Z. Hassan, M. Bououdina, PbS nanocrystal solar cells fabricated using microwave-assisted chemical bath deposition. Int. J. Hydrogen Energy 38, 807–822 (2013)

    Google Scholar 

  48. Y. Li, L. Wei, R. Zhang, Y. Chen, L. Mei, J. Jiao, Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications. Nanoscale Res. Lett. 8, 89–96 (2013)

    ADS  Google Scholar 

  49. V.K. Arepalli, J. Kim, Effect of substrate temperature on the structural and optical properties of radio frequency sputtered tin sulfide thin films for solar cell application. Thin Solid Films 666, 34–39 (2018)

    ADS  Google Scholar 

  50. A.M.S. Arulanantham, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Solution volume effect on structural, optical and photovoltaic properties of nebulizer spray deposited SnS thin films. J. Mater. Sci. Mater. Electron. 29, 12899–12909 (2018)

    Google Scholar 

  51. V.S.R. Rosario, I. Kulandaisamy, K. Deva Arun Kumar, K. Ramesh, H.A. Ibrahium, N.S. Awwad, Ag-doped PbS thin films by nebulizer spray pyrolysis for solar cells. Int. J. Energy Res. 6, 4505–4515 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant number R.G.P. 2/84/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ganesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, S., Vinoth, S., Prasad, K.H. et al. Quantitative analysis of Ag-doped SnS thin films for solar cell applications. Appl. Phys. A 126, 783 (2020). https://doi.org/10.1007/s00339-020-03959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03959-8

Keywords

Navigation