Skip to main content
Log in

High macroscopic piezoelectric d33 of the nm-thick flexible PZT ferroelectric film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Integrated nanoelectromechanical systems (NEMS) with nm-scale piezoelectric films exhibit enormous advantages compared with traditional microelectromechanical systems. Herein, the flexible PZT ferroelectric films with 50–200 nm thickness were achieved, and their piezoelectric d33 rapidly enhanced with the thickness of film increasing and the thickness of mica substrate decreasing. The d33 value of the 80 nm-thick PZT film increases from 180 to 220 pC/N with the thickness of mica substrate reducing from 0.2 mm to 10 μm to largely decrease clamping strain between substrate and PZT film. Furthermore, the flexible mica substrate largely increases both the piezoelectric effect and the inverse piezoelectric effect of PZT films. These nm-scale PZT films with robust piezoelectricity will encourage the creation of new NEMS and piezoelectric devices that are flexible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article and supplementary information.

References

  1. M.S.J. Barson, P. Peddibhotla, P. Ovartchaiyapong, K. Ganesan, R.L. Taylor, M. Gebert, Z. Mielens, B. Koslowski, D.A. Simpson, L.P. McGuinness, J. McCallum, P. Steven, S. Onoda, T. Ohshima, A.C.B. Jayich, F. Jelezko, N.B. Manson, M.W. Doherty, Nanomechanical sensing using spins in diamond. Nano Lett. 17, 1496–1503 (2017). https://doi.org/10.1021/acs.nanolett.6b04544

    Article  ADS  CAS  PubMed  Google Scholar 

  2. T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M.H. Park, S. Fichtner, P.D. Lomenzo, M. Hoffmann, U. Schroeder, Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021). https://doi.org/10.1063/5.0037617

    Article  ADS  CAS  Google Scholar 

  3. S.K. Kamilla, M. Ojha, Review on nano-electro-mechanical-system devices. Mater. Today: Proc. 81, 133–136 (2023). https://doi.org/10.1016/j.matpr.2021.02.801

    Article  CAS  Google Scholar 

  4. R. Decca, V. Aksyuk, D. López, Casimir force in micro and nano electro mechanical systems. Casimir Phys. 834, 287–309 (2011)

    Article  Google Scholar 

  5. Y. Jo, J.Y. Lee, E. Park, H.S. Kim, H.J. Choi, S. Mun, H.C. Song, Epitaxial PZT film-based ferroelectric field-effect transistors for artificial synapse. ACS Appl. Electron. Mater. 5, 4549–4555 (2023). https://doi.org/10.1021/acsaelm.3c00691

    Article  CAS  Google Scholar 

  6. Y. Qing, G.X. Fan, W. Ren, Q.Q. Fan, J. Ti, J.H. Li, C.H. Wang, PZT-Film-based piezoelectric micromachined ultrasonic transducer with i-shaped composite diaphragm. Micromachines 13(10), 1597 (2022). https://doi.org/10.3390/mi13101597

    Article  Google Scholar 

  7. T. Kim, H.C. Choi, J.S. Hur, D. Ha, B.J. Kuh, Y.S. Kim, S. Kim, K. Jeong, Progress, challenges, and opportunities in oxide semiconductor devices: a key building block for applications ranging from display backplanes to 3D integrated semiconductor chips. Adv. Mater. (2022). https://doi.org/10.1002/adma.202204663

    Article  PubMed  PubMed Central  Google Scholar 

  8. K. Shenai, Future prospects of widebandgap (WBG) semiconductor power switching devices. IEEE. T. Electron. Dev. 62, 248–257 (2014). https://doi.org/10.1109/TED.2014.2360641

    Article  ADS  CAS  Google Scholar 

  9. B. Narayan, J.S. Malhotra, R. Pandey, K. Yaddanapudi, P. Nukala, B. Dkhil, A. Senyshyn, R. Ranjan, Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nat. Mater. 17, 427–431 (2018). https://doi.org/10.1038/s41563-018-0060-2

    Article  ADS  CAS  PubMed  Google Scholar 

  10. N. Chidambaram, A. Mazzalai, P. Muralt, Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes. IEEE T. Ultrason. Ferro. 59, 1624–1631 (2012). https://doi.org/10.1109/TUFFC.2012.2368

    Article  Google Scholar 

  11. P.P. Lv, C.H. Yang, J. Qian, H.T. Wu, S.F. Huang, X. Cheng, Z.X. Cheng, Flexible lead-free perovskite oxide multilayer film capacitor based on (Na0.8K0.2)0.5Bi0.5TiO3/Ba0.5Sr0.5(Ti0.97Mn0.03)O3 for high-performance dielectric energy storage. Adv. Energy Mater. 10, 1904229 (2020). https://doi.org/10.1002/aenm.201904229

    Article  CAS  Google Scholar 

  12. P.P. Lv, J. Qian, C.H. Yang, T. Liu, Y.W. Wang, D. Wang, S.F. Huang, X. Cheng, Z.X. Cheng, Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy 97, 107182 (2022). https://doi.org/10.1016/j.nanoen.2022.107182

    Article  CAS  Google Scholar 

  13. W.X. Gao, L. You, Y.J. Wang, G.L. Yuan, Y.H. Chu, Z.G. Liu, J.M. Liu, Flexible PbZr0.52Ti0.48O3 capacitors with giant piezoelectric response and dielectric tunability. Adv. Electron. Mater. 3, 1600542 (2017). https://doi.org/10.1002/aelm.201600542

    Article  CAS  Google Scholar 

  14. D.W. Zhang, P. Schoenherr, P. Sharma, J. Seidel, Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2023). https://doi.org/10.1038/s41578-022-00484-3

    Article  ADS  CAS  Google Scholar 

  15. X.Q. Shi, Y.Z. Sun, D.K. Li, H.T. Liu, W.K. Xie, X.C. Luo, Advances in wearable flexible piezoelectric energy harvesters: materials, structures, and fabrication. J. Mater. Sci. Mater. Electron. 34, 220 (2023). https://doi.org/10.1007/s10854-022-09536-4

    Article  CAS  Google Scholar 

  16. P. Verardi, F. Craciun, M. Dinescu, C. Dinescu, Epitaxial piezoelectric PZT thin films obtained by pulsed laser deposition. Thin Solid Films 318, 265–269 (1998). https://doi.org/10.1016/S0040-6090(97)01187-5

    Article  ADS  CAS  Google Scholar 

  17. M.D. Nguyen, M. Dekkers, H.N. Vu, G. Rijnders, Film-thickness and composition dependence of epitaxial thin-film PZT-based mass-sensors. Sens. Actuator A Phys. 199, 98–105 (2013). https://doi.org/10.1016/j.sna.2013.05.004

    Article  CAS  Google Scholar 

  18. H.G. Yeo, X. Ma, C. Rahn, S. Trolier-McKinstry, Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils. Adv. Funct. Mater. 26, 5940–5946 (2016). https://doi.org/10.1002/adfm.201601347

    Article  CAS  Google Scholar 

  19. L.L. Shu, Z.G. Wang, R.H. Liang, Z. Zhang, S.W. Shu, C.X. Tang, F. Li, R.K. Zheng, S.M. Ke, G. Catalan, Intrinsic flexoelectricity of van der Waals epitaxial thin films. Phys. Rev. B 106, 024108 (2022). https://doi.org/10.1103/PhysRevB.106.024108

    Article  ADS  CAS  Google Scholar 

  20. L. You, Y. Zhang, S. Zhou, A. Chaturvedi, S.A. Morris, F.C. Liu, L. Chang, D. Ichinose, H. Funakubo, W.J. Hu, T. Wu, Z. Liu, S. Dong, J.L. Wang, Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, 3780 (2019). https://doi.org/10.1126/sciadv.aav3780

    Article  ADS  CAS  Google Scholar 

  21. S.S. Won, H. Seo, M. Kawahara, S. Glinsek, J. Lee, Y. Kim, C.K. Jeong, A.I. Kingon, S.H. Kim, Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy 55, 182–192 (2019). https://doi.org/10.1016/j.nanoen.2018.10.068

    Article  CAS  Google Scholar 

  22. S.T. Han, H.Y. Peng, Q.J. Sun, S. Venkatesh, K.S. Chung, S.C. Lau, Y. Zhou, V.A.L. Roy, An overview of the development of flexible sensors. Adv. Mater. 29, 1700375 (2017). https://doi.org/10.1002/adma.201700375

    Article  CAS  Google Scholar 

  23. Y.H. Liu, M. Pharr, G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017). https://doi.org/10.1021/acsnano.7b04898

    Article  CAS  PubMed  Google Scholar 

  24. S.H. Zhang, L. Zhang, L. Wang, F. Wang, G. Pan, A flexible e-skin based on micro-structured PZT thin films prepared via a low-temperature PLD method. J. Mater. Chem. C. 7, 4760–4769 (2019). https://doi.org/10.1039/c8tc06350h

    Article  CAS  Google Scholar 

  25. M. Sahu, V. Vivekananthan, S. Hajra, A. Ks, N.P.M.J. Raj, S.J. Kim, Synergetic enhancement of energy harvesting performance in triboelectric nanogenerator using ferroelectric polarization for self-powered ir signaling and body activity monitoring. J. Mater. Chem. A. 8, 22257–22268 (2020). https://doi.org/10.1039/d0ta06215d

    Article  CAS  Google Scholar 

  26. Q. Dai, Y. Li, J. Wei, Q. Li, Z. Qiu, Y. Pu, Giant ferroelectric and piezoelectric properties of lead free Ba0.85Ca0.15Ti0.90Zr0.10O3 thin film in 100 nm thickness range. Phys. Status Solidi A (2023). https://doi.org/10.1002/pssa.202300388

    Article  Google Scholar 

  27. Y.C. Ding, X.F. Zhao, Z.E. Zhao, Y.J. Wang, T. Wu, G.L. Yuan, J.M. Liu, Strain-manipulated photovoltaic and photoelectric effects of the mapbbr3 single crystal. ACS Appl. Mater. Interfaces 14, 52134–52139 (2022). https://doi.org/10.1021/acsami.2c13349

    Article  CAS  PubMed  Google Scholar 

  28. X. Fei, X.J. Lin, C. Wang, W.L. Li, F. Yu, C.H. Yang, S.F. Huang, Sb2O3-modified lead zirconate titanate piezoelectric ceramics with enhancing piezoelectricity and low loss. J. Am. Ceram. Soc. 106, 501–512 (2023). https://doi.org/10.1111/jace.18771

    Article  CAS  Google Scholar 

  29. J.F. Li, Z.X. Zhu, F.P. Lai, Thickness-dependent phase transition and piezoelectric response in textured Nb-doped Pb (Zr0.52Ti0.48) O3 thin films. J. Phys. Chem. C 114, 17796–17801 (2010). https://doi.org/10.1021/jp106384e

    Article  CAS  Google Scholar 

  30. N.N. Liu, X.P. Zhang, Y.C. Ding, Y.J. Wang, X.B. Lu, G.L. Yuan, J.M. Liu, Strong piezoelectricity of the nm-thick flexible Hf0.5Zr0.5O2 ferroelectric film. J. Alloys Comp. 968, 172083 (2023). https://doi.org/10.1016/j.jallcom.2023.172083

    Article  CAS  Google Scholar 

  31. S. Hajra, V. Vivekananthan, M. Sahu, G. Khandelwal, N.P.M.J. Raj, S.J. Kim, Triboelectric nanogenerator using multiferroic materials: an approach for energy harvesting and self-powered magnetic field detection. Nano Energy 85, 105964 (2021). https://doi.org/10.1016/j.nanoen.2021.105964

    Article  CAS  Google Scholar 

  32. M. Peddigari, B. Wang, R. Wang, W.H. Yoon, J. Jang, H. Lee, K. Song, G.T. Hwang, K. Wang, Y. Hou, H. Palneedi, Y. Yan, H.S. Choi, J. Wang, A. Talluri, L.Q. Chen, S. Priya, D.Y. Jeong, J. Ryu, Giant energy density via mechanically tailored relaxor ferroelectric behavior of PZT thick film. Adv. Mater. 35, 2302554 (2023). https://doi.org/10.1002/adma.202302554

    Article  CAS  Google Scholar 

  33. W.B. Tang, Y.Q. Wang, G.L. Xiang, X.F. Zhao, Z.Y. Pan, Y.P. Wang, Y. Yang, Y.J. Wang, G.L. Yuan, Enhanced high-power performance of Fe-doped PZMNZT piezoelectric ceramics. J. Am. Ceram. Soc. 106, 6868–6878 (2023). https://doi.org/10.1111/jace.19330

    Article  CAS  Google Scholar 

  34. H. Li, K. Wu, Z. Xu, Z. Wang, Y. Meng, L. Li, Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure. ACS Appl. Mater. Interfaces 10, 20826–20834 (2018). https://doi.org/10.1021/acsami.8b03639

    Article  CAS  PubMed  Google Scholar 

  35. J. Jiang, Y. Bitla, C.W. Huang, T.H. Do, H.J. Liu, Y.H. Hsieh, C.H. Ma, C.Y. Jang, Y.H. Lai, P.W. Chiu, W.W. Wu, Y.C. Chen, Y.C. Zhou, Y.H. Chu, Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 3, e1700121 (2017). https://doi.org/10.1126/sciadv.1700121

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. R. Keech, L.H. Ye, J.L. Bosse, G. Esteves, J. Guerrier, J.L. Jones, M.A. Kuroda, B.D. Huey, S.T. McKinstry, Declamped piezoelectric coefficients in patterned 70/30 lead magnesium niobate–lead titanate thin films. Adv. Funct. Mater. 27, 1605014 (2017). https://doi.org/10.1002/adfm.201605014

    Article  CAS  Google Scholar 

  37. C.H. Yang, Y.J. Han, J. Qian, Z.X. Cheng, Flexible temperature-stable and fatigue-endurable PbZr0.52Ti0.48O3 ferroelectric film for nonvolatile memory. Adv. Electron. Mater. 5, 1900443 (2019). https://doi.org/10.1002/aelm.201900443

    Article  CAS  Google Scholar 

  38. M. Acharya, D. Lou, A. Fernandez, J. Kim, Z.S. Tian, L.W. Martin, Direct measurement of inverse piezoelectric effects in thin films using laser doppler vibrometry. Phys. Rev. Appl. 20, 014017 (2023). https://doi.org/10.1103/PhysRevApplied.20.014017

    Article  ADS  CAS  Google Scholar 

  39. R. Tao, J.H. Shi, M. Rafiee, A. Akbarzadeh, D. Therriault, Fused filament fabrication of PVDF films for piezoelectric sensing and energy harvesting applications. Mater. Adv. 3, 4851 (2022). https://doi.org/10.1039/d2ma00072e

    Article  CAS  Google Scholar 

  40. M. Fortunato, C.R. Chandraiahgari, G.D. Bellis, P. Ballirano, F. Sarto, A. Tamburrano, M.S. Sarto, Piezoelectric effect and electroactive phase nucleation in self-standing films of unpoled PVDF nanocomposite films. Nanomaterials 8, 743 (2018). https://doi.org/10.3390/nano8090743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. X.J. Li, Y.P. Wang, T.R. He, Y. Yang, Preparation of PVDF flexible piezoelectric film with high β-phase content by matching solvent dipole moment and crystallization temperature. J. Mater. Sci. Mater. Electron. 30, 20174–20180 (2019). https://doi.org/10.1007/s10854-019-02400-y

    Article  CAS  Google Scholar 

  42. M. Habib, P. Ahmad, F. Akram, I. Kebaili, A. Rahman, I.U. Din, M.J. Iqbal, M.H. Kim, S. Lee, M.U. Khandaker, H.G. Yeo, A. Karoui, T.K. Song, High and temperature-insensitive piezoelectric performance in the lead-free Sm-doped BiFeO3–BaTiO3 ceramics with high curie temperature. Ceram. Int. 48, 26608–26617 (2022). https://doi.org/10.1016/j.ceramint.2022.05.355

    Article  CAS  Google Scholar 

  43. H. Liu, Y.X. Liu, A. Song, Q. Li, Y. Yin, F.Z. Yao, K. Wang, W. Gong, B.P. Zhang, J.F. Li, (K, Na)NbO3-based lead-free piezoceramics: one more step to boost applications. Natl. Sci. Rev. (2022). https://doi.org/10.1093/nsr/nwac101

    Article  PubMed  PubMed Central  Google Scholar 

  44. Y.X. Yang, E.W. Sun, Z.M. Xu, H.S. Zheng, B. Yang, R. Zhang, W.W. Cao, Sm and Mn co-doped PMN-PT piezoelectric ceramics: defect engineering strategy to achieve large d33 and high Qm. J. Mater. Sci. Technol. 137, 143–151 (2023). https://doi.org/10.1016/j.jmst.2022.08.004

    Article  CAS  Google Scholar 

  45. A. Mondal, H.H. Singh, N. Khare, Effect of piezoelectric coefficient and dielectric constant on the performance of polymer nanocomposite piezoelectric nanogenerator. J. Mater. Sci. Mater. Electron. 34, 314 (2023). https://doi.org/10.1007/s10854-022-09415-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (92263105 and 62374090 and U2037603) and the Fundamental Research Funds for the Central Universities (30921013108).

Funding

Funding was provided by National Natural Science Foundation of China (Garnt Nos. 92263105, 62374090, U2037603) and Fundamental Research Funds for the Central Universities (Grant No. 30921013108).

Author information

Authors and Affiliations

Authors

Contributions

RZ: Conceptualization, Investigation, Data curation, Formal analysis, Writing—original draft, YD: Investigation, Data curation, Formal analysis, NL: Investigation, Formal analysis, Conceptualization, WT: Investigation, Formal analysis, Conceptualization. YW: Investigation, Formal analysis, Conceptualization, YY: Conceptualization, Supervision, Writing—review & editing, YW: Investigation, Formal analysis, Conceptualization, GY: Conceptualization, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Guoliang Yuan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1898 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Ding, Y., Liu, N. et al. High macroscopic piezoelectric d33 of the nm-thick flexible PZT ferroelectric film. J Mater Sci: Mater Electron 35, 298 (2024). https://doi.org/10.1007/s10854-024-12040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12040-6

Navigation