Skip to main content
Log in

Rationally design of substrate surface topography toward the improvement of Cu-plated coating adhesion

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electroless plating is a promising method to achieve material surface metallization, low rupture work of plated coating and complex production processes have become important factors that restrict its progress. In this study, a facile method combined with primer modification (mixture of SiO2 particle and resin) and electroless deposition to fabricate a high-adhesion Cu-plated coating is demonstrated. Results showed that poly(ethylene terephthalate) (PET) modified with primer could absorb Ag+ through the coordination effect because hydrophilic groups (–OH and –NH2) were possibly used as a bridge for chemisorbing of rare metal ions (Ag+) through ion exchange, which acted as a catalyst for the deposition of Cu coating on its surface. More importantly, introducing SiO2 particles in the primer can improve surface roughness, which is enhanced from 0.643 to 0.829 μm of modified coating, result in the improvement of substrate/deposited coating contact area, which would facilitate the enhancement of the adhesion behavior of plated coating. The deposition of bead-like structure Cu coating on primer-modified PET surface with a higher average roughness value possessed excellent electrical property, adhesion and crystallization. The resistivity of the copper patterns is approximately 9.81 × 10−6 Ω·cm. It is promising to integrate this kind of metal material with excellent performance in future flexible devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Sun, L. Zhang, S. Tao, Y.X. Yu, S.J. Li, H. Wang, J.S. Qiu, Adv. Mater. Interfaces 4, 1700052 (2017). https://doi.org/10.1002/admi.201700052

    Article  CAS  Google Scholar 

  2. T. Zhang, X. Wang, T. Li, Q.Q. Guo, J. Yang, J. Mater. Chem. C 2, 286–294 (2014). https://doi.org/10.1039/C3TC31740D

    Article  CAS  Google Scholar 

  3. J.J. Huang, T. Jiang, Z.F. Zhang, W.Q. Zhang, S.L. Wang, Z.M. Chen, J.J. Wan, P. Li, H.L. Li, C.M. Gui, ACS Sustain. Chem. Eng. 11, 9540–9552 (2023). https://doi.org/10.1021/acssuschemeng.2c07732

    Article  CAS  Google Scholar 

  4. Y. Chang, Y. Tao, Q. Zhang, Z.G. Yang, Electrochim. Acta 158, 7–12 (2015). https://doi.org/10.1016/j.electacta.2015.01.161

    Article  CAS  Google Scholar 

  5. S.J. Park, T.J. Ko, J. Yoon, M.W. Moon, K.H. Oh, J.H. Han, Appl. Surf. Sci. 427, 1–9 (2018). https://doi.org/10.1016/j.apsusc.2017.08.195

    Article  ADS  CAS  Google Scholar 

  6. J.J. Huang, L.L. Xu, D.F. Zhao, J. Wang, C.R. Chu, H.D. Chen, Y.H. Liu, Z.M. Chen, Chem. Eng. J. 383, 123199 (2020). https://doi.org/10.1016/j.cej.2019.123199

    Article  CAS  Google Scholar 

  7. J.J. Huang, W.P. Wu, R.X. Zhang, G.Q. Lu, B. Chen, Z.M. Chen, C.M. Gui, Nano Energy 92, 106734 (2022). https://doi.org/10.1016/j.nanoen.2021.106734

    Article  CAS  Google Scholar 

  8. D.X. Chen, Y. Zhang, T.S. Bessho, J. Sang, H. Hirahara, K. Mori, Z.X. Kang, Chem. Eng. J. 303, 100–108 (2016). https://doi.org/10.1016/j.cej.2016.05.114

    Article  CAS  Google Scholar 

  9. J.J. Huang, C.M. Gui, H.D. Ma, P. Li, W.P. Wu, Z.M. Chen, Compos. Sci. Technol. 202, 108547 (2021). https://doi.org/10.1016/j.compscitech.2020.108547

    Article  CAS  Google Scholar 

  10. S.H. Xu, J.F. Wang, A. Valério, W.Y. Zhang, J.L. .Sun, D.N. He, Inorg. Chem. Front. 8, 48–58 (2021). https://doi.org/10.1039/D0QI00659A

    Article  CAS  Google Scholar 

  11. J.G. Yang, Q. Yuan, Y. Liu, X.L. Huang, Y.X. Qiao, J.N. Lu, C.L. Song, Inorg. Chem. Front. 6, 1189–1194 (2019). https://doi.org/10.1039/C9QI00048H

    Article  CAS  Google Scholar 

  12. S.Q. Ma, Y.P. Zhang, Y.H. Liang, L. Ren, W.J. Tian, L.Q. Ren, Adv. Funct. Mater. 30, 1908508 (2020). https://doi.org/10.1002/adfm.201908508

    Article  CAS  Google Scholar 

  13. T. Makita, R. Nakamura, M. Sasaki, S. Kumagai, T. Okamoto, S. Watanabe, J. Takeya, Adv. Funct. Mater. 30, 2003977 (2020). https://doi.org/10.1002/adfm.202003977

    Article  CAS  Google Scholar 

  14. J. Hu, M.F. Yu, Science 329, 313–316 (2010). https://doi.org/10.1126/science.1190496

    Article  ADS  CAS  PubMed  Google Scholar 

  15. P. Li, X. Liu, R.X. Zhang, Z.M. Chen, D. Sun, J.J. Huang, C.M. Gui, ACS Sustain. Chem. Eng. 10, 8075–8085 (2022). https://doi.org/10.1021/acssuschemeng.2c02241

    Article  CAS  Google Scholar 

  16. L. Hirt, S. Ihle, Z. Pan, L. Dorwling-Carter, A. Reiser, J.M. Wheeler, R. Spolenak, J. Vörös, T. Zambelli, Adv. Mater. 28, 2311–2315 (2016). https://doi.org/10.1002/adma.201504967

    Article  CAS  PubMed  Google Scholar 

  17. S. Daryadel, A. Behroozfar, M. Minary-Jolandan, Adv. Eng. Mater. 21, 1800946 (2019). https://doi.org/10.1002/adem.201800946

    Article  CAS  Google Scholar 

  18. M.E.H. Bhuiyan, A. Behroozfar, S. Daryadel, S. Moreno, S. Morsali, M.M. Jolandan, Sci. Rep. 9, 19032 (2019). https://doi.org/10.1038/s41598-019-55640-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. J.J. Huang, S.L. Wang, X.K. Zhao, W.Q. Zhang, Z.M. Chen, R. Liu, P. Li, H.L. Li, C.M. Gui, Mater. Horiz. 9, 1596–1608 (2023). https://doi.org/10.1039/d3mh00618b

    Article  CAS  Google Scholar 

  20. M. Asif, A. Aziz, G. Ashraf, T. Iftikhar, Chem. Eng. J. 427, 131398 (2022). https://doi.org/10.1016/j.cej.2021.131398

    Article  CAS  Google Scholar 

  21. C.M. Gui, C.G. Yao, J.J. Huang, Z.M. Chen, G.S. Yang, Appl. Surf. Sci. 506, 144935 (2020). https://doi.org/10.1016/j.apsusc.2019.144935

    Article  CAS  Google Scholar 

  22. Y.F. Wang, Y. Hong, G.Y. Zhou, W. He, Z.P. Gao, S.X. Wang, C. Wang, Y.M. Chen, Z.S. Weng, Y.Q. Wang, ACS Appl. Mater. Interfaces 11, 44811–44819 (2019). https://doi.org/10.1021/acsami.9b11690

    Article  CAS  PubMed  Google Scholar 

  23. L.D. Rollmann, R.T. Iwamoto, J. Am. Chem. Soc. 90, 1455–1463 (1968). https://doi.org/10.1021/ja01008a013

    Article  CAS  Google Scholar 

  24. Y. Wang, Y. Wang, J.J. Chen, H. Guo, K. Liang, K. Marcus, Q.L. Peng, J. Zhang, Z.S. Feng, Electrochim. Acta 218, 24–31 (2016). https://doi.org/10.1016/j.electacta.2016.08.143

    Article  CAS  Google Scholar 

  25. J.J. Huang, W.Q. Zhang, X. Chen, S.L. Wang, Z.M. Chen, P. Li, H.L. Li, C.M. Gui, Fabrication of triboelectric nanogenerators with multiple strain mechanisms for high-accuracy material and gesture recognition. J. Mater. Chem. A 11, 18441 (2023). https://doi.org/10.1039/d3ta02946h

    Article  CAS  Google Scholar 

  26. C.M. Gui, R.X. Zhang, Z.M. Chen, W.P. Wu, H.L. Li, Compos. Sci. Technol. 218, 109187 (2022). https://doi.org/10.1016/j.compscitech.2021.109187

    Article  CAS  Google Scholar 

  27. S. Daryadel, A. Behroozfar, M. Minary-Jolandan, Mater. Sci. Eng. A 767, 138441 (2019). https://doi.org/10.1016/j.msea.2019.138441

    Article  CAS  Google Scholar 

  28. S. Daryadel, M. Minary-Jolandan, Mater. Lett. 280, 128584 (2020). https://doi.org/10.1016/j.matlet.2020.128584

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LYL and HCQ. The first draft of the manuscript was written by LYL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. JBH and LBL Conceptualization, data curation, writing-review and editing, validation, supervision.

Corresponding author

Correspondence to Liangbin Li.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving animals performed by any of the authors. Also, this article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1586.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

liu, Y., Qi, H., Liu, C. et al. Rationally design of substrate surface topography toward the improvement of Cu-plated coating adhesion. J Mater Sci: Mater Electron 35, 374 (2024). https://doi.org/10.1007/s10854-024-11985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11985-y

Navigation