Skip to main content
Log in

The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composite electrode materials were designed and prepared using covalent and non-covalent strategies. The effects of ionic liquid modification on extending the operating voltage window, restraining self-discharge and optimizing the cycle life of devices were comprehensively studied. As a result, the non-covalent modification method can effectively reduce the defect degree of the electrodes without influencing their porosity. Meanwhile, the wettability of ILs/graphene with ILs electrolytes is improved and the self-discharge effect of the electrodes is suppressed. The resulting supercapacitors exhibited excellent stability at 4.0 V for 10,000 cycles with energy densities reaching up to 65 Wh kg–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that they have known the research data policy, and the data are available.

References

  1. A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sust. Energ. Rev. 101, 123–145 (2019). https://doi.org/10.1016/j.rser.2018.10.026

    Article  CAS  Google Scholar 

  2. T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh, High-performance supercapacitors based on poly (ionic liquid)-modified graphene electrodes. ACS Nano 5, 436–442 (2011). https://doi.org/10.1021/nn101968p

    Article  CAS  PubMed  Google Scholar 

  3. J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014). https://doi.org/10.1002/aenm.201300816

    Article  CAS  Google Scholar 

  4. G. Hernández, M. Işik, D. Mantione, A. Pendashteh, P. Navalpotro, D. Shanmukaraj, R. Marcilla, D. Mecerreyes, Redox-active poly (ionic liquid) s as active materials for energy storage applications. J. Mater. Chem. A. 5, 16231–16240 (2017). https://doi.org/10.1039/C6TA10056B

    Article  CAS  Google Scholar 

  5. K.L. Van Aken, M. Beidaghi, Y. Gogotsi, Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chem. Int. Ed. 127, 4888–4891 (2015). https://doi.org/10.1002/ange.201412257

    Article  ADS  Google Scholar 

  6. S. Pan, M. Yao, J. Zhang, B. Li, C. Xing, X. Song, P. Su, H. Zhang, Recognition of ionic liquids as high-voltage electrolytes for supercapacitors. Front. Chem. 8, 261 (2020). https://doi.org/10.3389/fchem.2020.00261

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. Lewandowski, A. Olejniczak, M. Galinski, I. Stepniak, Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J. Power Sour. 195, 5814–5819 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.082

    Article  ADS  CAS  Google Scholar 

  8. D.R. MacFarlane, M. Forsyth, P.C. Howlett, M. Kar, S. Passerini, J.M. Pringle, H. Ohno, M. Watanabe, F. Yan, W. Zheng, Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 1, 1–15 (2016). https://doi.org/10.1038/natrevmats.2015.5

    Article  CAS  Google Scholar 

  9. J. Zheng, N. Qin, L. Jin, X. Guo, C. Shen, Q. Wu, J.P. Zheng, Constructing an unbalanced structure toward high working voltage for improving energy density of non-aqueous carbon-based electrochemical capacitors. Chinese Chem. Lett. 31, 903–908 (2020). https://doi.org/10.1016/j.cclet.2019.09.048

    Article  CAS  Google Scholar 

  10. J. Zheng, S.S. Moganty, P.C. Goonetilleke, R.E. Baltus, D. Roy, A comparative study of the electrochemical characteristics of [Emim+][BF4] and [Bmim+][BF4] ionic liquids at the surfaces of carbon nanotube and glassy carbon electrodes. J. Phys. Chem. C 115, 7527–7537 (2011). https://doi.org/10.1021/jp1123162

    Article  CAS  Google Scholar 

  11. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731–736 (2014). https://doi.org/10.1021/nl404008e

    Article  ADS  CAS  PubMed  Google Scholar 

  12. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sour. 101, 109–116 (2001). https://doi.org/10.1016/S0378-7753(01)00707-8

    Article  ADS  CAS  Google Scholar 

  13. P. Liu, M. Verbrugge, S. Soukiazian, Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J. Power. Sources 156, 712–718 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.055

    Article  ADS  CAS  Google Scholar 

  14. E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498–2507 (2006). https://doi.org/10.1016/j.carbon.2006.05.022

    Article  CAS  Google Scholar 

  15. O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43, 1303–1310 (2005). https://doi.org/10.1016/j.carbon.2005.01.001

    Article  CAS  Google Scholar 

  16. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim. Acta 49, 515–523 (2004). https://doi.org/10.1016/j.electacta.2003.08.026

    Article  CAS  Google Scholar 

  17. Q.-Y. Li, Z.-S. Li, L. Lin, X.Y. Wang, Y.-F. Wang, C.-H. Zhang, H.-Q. Wang, Facile synthesis of activated carbon/carbon nanotubes compound for supercapacitor application. Chem. Eng. J. 156, 500–504 (2010). https://doi.org/10.1016/j.cej.2009.10.025

    Article  CAS  Google Scholar 

  18. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010). https://doi.org/10.1021/nn101187z

    Article  CAS  PubMed  Google Scholar 

  20. S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova, A. Oya, Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™ Buckytubes™) in propylene carbonate electrolytes. Electrochem. Commun. 4, 593–598 (2002). https://doi.org/10.1016/S1388-2481(02)00382-X

    Article  CAS  Google Scholar 

  21. L.B. Ren, W. Hua, Z.D. Hou, J.G. Wang, Rational construction of CoP@C hollow structure for ultrafast and stable sodium energy storage. Rare Met. 41, 1859–1869 (2022). https://doi.org/10.1007/s12598-021-01930-x

    Article  CAS  Google Scholar 

  22. J. Zhang, W. Lv, D. Zheng, Q. Liang, D.W. Wang, F. Kang, Q.H. Yang, The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 8, 1702395 (2018). https://doi.org/10.1002/aenm.201702395

    Article  CAS  Google Scholar 

  23. Z. She, D. Ghosh, M.A. Pope, Decorating graphene oxide with ionic liquid nanodroplets: an approach leading to energy-dense, high-voltage supercapacitors. ACS Nano 11, 10077–10087 (2017). https://doi.org/10.1021/acsnano.7b04467

    Article  CAS  PubMed  Google Scholar 

  24. S. Yang, X. Song, P. Zhang, J. Sun, L. Gao, Self-assembled α-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors. Small 10, 2270–2279 (2014). https://doi.org/10.1002/smll.201303922

    Article  CAS  PubMed  Google Scholar 

  25. Y. Tao, X. Xie, W. Lv, D.-M. Tang, D. Kong, Z. Huang, H. Nishihara, T. Ishii, B. Li, D. Golberg, Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013). https://doi.org/10.1038/srep02975

    Article  PubMed  PubMed Central  Google Scholar 

  26. L. Zhang, G. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 115, 17206–17212 (2011). https://doi.org/10.1021/jp204036a

    Article  CAS  Google Scholar 

  27. Q. Wang, Y. Yun, Nonenzymatic sensor for hydrogen peroxide based on the electrodeposition of silver nanoparticles on poly (ionic liquid)-stabilized graphene sheets. Microchim. Acta 180, 261–268 (2013). https://doi.org/10.1007/s00604-012-0921-3

    Article  CAS  Google Scholar 

  28. J. Yuan, M. Antonietti, Poly (ionic liquid)s: polymers expanding classical property profiles. Polymer 52, 1469–1482 (2011). https://doi.org/10.1016/j.polymer.2011.01.043

    Article  CAS  Google Scholar 

  29. H. Mao, J. Liang, H. Zhang, Q. Pei, D. Liu, S. Wu, Y. Zhang, X.-M. Song, Poly (ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid. Biosens. Bioelectron. 70, 289–298 (2015). https://doi.org/10.1016/j.bios.2015.03.059

    Article  CAS  PubMed  Google Scholar 

  30. P. Wang, Y. Zheng, B. Li, Preparation and electrochemical properties of polypyrrole/graphite oxide composites with various feed ratios of pyrrole to graphite oxide. Synth. Met. 166, 33–39 (2013). https://doi.org/10.1016/j.synthmet.2013.01.002

    Article  CAS  Google Scholar 

  31. F. Shi, Y. Deng, Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel. Spectochim. Acta. A 62, 239–244 (2005). https://doi.org/10.1016/j.saa.2004.12.031

    Article  ADS  CAS  Google Scholar 

  32. J. Zhang, P. Chen, B.H.L. Oh, M.B. Chan-Park, High capacitive performance of flexible and binder-free graphene–polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. Nanoscale 5, 9860–9866 (2013). https://doi.org/10.1039/C3NR02381H

    Article  ADS  CAS  PubMed  Google Scholar 

  33. T.T. Tung, T.Y. Kim, J.P. Shim, W.S. Yang, H. Kim, K.S. Suh, Poly (ionic liquid)-stabilized graphene sheets and their hybrid with poly (3, 4-ethylenedioxythiophene). Org. Electron. 12, 2215–2224 (2011). https://doi.org/10.1016/j.orgel.2011.09.012

    Article  CAS  Google Scholar 

  34. L. Qiu, Y. Peng, B. Liu, B. Lin, Y. Peng, M.J. Malik, F. Yan, Polypyrrole nanotube-supported gold nanoparticles: an efficient electrocatalyst for oxygen reduction and catalytic reduction of 4-nitrophenol. Appl. Catal. A-Gen. 413, 230–237 (2012). https://doi.org/10.1016/j.apcata.2011.11.013

    Article  CAS  Google Scholar 

  35. I. Carrillo, E.S. de la Blanca, J.L.G. Fierro, M.A. Raso, F. Acción, E. Enciso, M.I. Redondo, Conductivity and long term stability of polypyrrole poly (styrene-co-methacrylic acid) core–shell particles at different polypyrrole loadings. Thin Solid Films 539, 154–160 (2013). https://doi.org/10.1016/j.tsf.2013.05.086

    Article  ADS  CAS  Google Scholar 

  36. S. Konwer, R. Boruah, S.K. Dolui, Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode. J. Electron. Mater. 40, 2248–2255 (2011). https://doi.org/10.1007/s11664-011-1749-z

    Article  ADS  CAS  Google Scholar 

  37. I.M. De la Fuente Salas, Y.N. Sudhakar, M. Selvakumar, High performance of symmetrical supercapacitor based on multilayer films of graphene oxide/polypyrrole electrodes. Appl. Surf. Sci. 296, 195–203 (2014). https://doi.org/10.1016/j.apsusc.2014.01.080

    Article  ADS  CAS  Google Scholar 

  38. C. Kolbeck, N. Taccardi, N. Paape, P.S. Schulz, P. Wasserscheid, H.-P. Steinrück, F. Maier, Redox chemistry, solubility, and surface distribution of Pt (II) and Pt (IV) complexes dissolved in ionic liquids. J. Mol. Liq. 192, 103–113 (2014). https://doi.org/10.1016/j.molliq.2013.07.007

    Article  CAS  Google Scholar 

  39. S. Carquigny, J.-B. Sanchez, F. Berger, B. Lakard, F. Lallemand, Ammonia gas sensor based on electrosynthesized polypyrrole films. Talanta 78, 199–206 (2009). https://doi.org/10.1016/j.talanta.2008.10.056

    Article  CAS  PubMed  Google Scholar 

  40. W. Jia, Y. Wu, J. Huang, Q. An, D. Xu, Y. Wu, F. Li, G. Li, Poly (ionic liquid) brush coated electrospun membrane: a useful platform for the development of functionalized membrane systems. J. Mater. Chem. 20, 8617–8623 (2010). https://doi.org/10.1039/C0JM01179G

    Article  CAS  Google Scholar 

  41. S. Chebil, M.O. Monod, P. Fisicaro, Direct electrochemical synthesis and characterization of polypyrrole nano-and micro-snails. Electrochim. Acta 123, 527–534 (2014). https://doi.org/10.1016/j.electacta.2014.01.058

    Article  CAS  Google Scholar 

  42. Y. Wei, L. Li, X. Yang, G. Pan, G. Yan, X. Yu, One-step UV-induced synthesis of polypyrrole/Ag nanocomposites at the water/ionic liquid interface. Nanoscale Res. Lett. 5, 433–437 (2010). https://doi.org/10.1007/s11671-009-9501-9

    Article  ADS  CAS  Google Scholar 

  43. L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011). https://doi.org/10.1021/nl201432g

    Article  ADS  CAS  PubMed  Google Scholar 

  44. W. Chen, X. Li, G. Xue, Z. Wang, W. Zou, Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres. Appl. Surf. Sci. 218, 216–222 (2003). https://doi.org/10.1016/S0169-4332(03)00590-7

    Article  ADS  CAS  Google Scholar 

  45. S. Fountoulaki, V. Daikopoulou, P.L. Gkizis, I. Tamiolakis, G.S. Armatas, I.N. Lykakis, Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles. ACS Catal. 4, 3504–3511 (2014). https://doi.org/10.1021/cs500379u

    Article  CAS  Google Scholar 

  46. A.S. Rewar, R.S. Bhavsar, K. Sreekumar, U.K. Kharul, Polybenzimidazole based polymeric ionic liquids (PILs): effects of controlled degree of N-quaternization on physical and gas permeation properties. J. Membr. Sci. 481, 19–27 (2015). https://doi.org/10.1016/j.memsci.2015.02.004

    Article  CAS  Google Scholar 

  47. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2, 2164–2170 (2010). https://doi.org/10.1039/C0NR00224K

    Article  ADS  CAS  PubMed  Google Scholar 

  48. L. Demarconnay, E. Raymundo-Piñero, F. Béguin, Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. J. Power Sour. 196, 580–586 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.013

    Article  ADS  CAS  Google Scholar 

  49. R. Arunkumar, C.J. Drummond, T.L. Greaves, FTIR spectroscopic study of the secondary structure of globular proteins in aqueous protic ionic liquids. Front. Chem. 7, 74 (2019). https://doi.org/10.3389/fchem.2019.00074

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Nomura, H. Nishihara, N. Kobayashi, T. Asada, T. Kyotani, 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energ. Environ. Sci. 12, 1542–1549 (2019). https://doi.org/10.1039/C8EE03184C

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52102053), the Fundamental Research Program of Shanxi Province (Grant No. 20210302124655), the Natural Science Foundation of Shanxi Province (Grant No. 20210302123041), the Key Laboratory Research Foundation of North University of China (Grant No. 2022C80303), the Shanxi Key Laboratory of Advanced Carbon Electrode Materials (Grant No. 202104010910019).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the completion of this paper. The details are as follows: (1) JK’s contributions included investigation, experiment implementation, data processing and analysis, and paper writing. (2) JL’s contributions included research ideas and investigation, paper revision, and providing funding and platforms for research. (3) RZ’s contributions were to revise the article. (4) CZ’s contributions were to assist the first author in the testing of the electrochemical impedance.

Corresponding author

Correspondence to Jiachen Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This paper comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Zhang, C., Zhou, R. et al. The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors. J Mater Sci: Mater Electron 35, 165 (2024). https://doi.org/10.1007/s10854-023-11900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11900-x

Navigation