Skip to main content
Log in

Structure, hardness, optical absorption, photoluminescence and thermoluminescence of Pr ions doped KCl single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, KCl crystal doped with different Pr ions concentration were grown by the traditional Cz method. The structural, mechanical and optical properties of as-grown crystals were systematically studied by the experimental measurements. X-ray diffraction (XRD) results revealed that the K+ ions have been replaced by the Pr3+ ions. Hardness analysis displayed the hardness has been improved and both the normal and reverse indentation size effect (ISE) were observed. Absorption spectra confirmed six main peaks corresponding to the 3H4 ground state to the 5d1 level transition of the Pr3+ ions. The intense peak at 596 nm in the photoluminescence (PL) emission spectra corresponded to 3P2 → 3H6 transition of the Pr3+ ions. The optimum doping concentration of Pr3+ in KCl crystal was found to be at x = 0.008, under the optimal concentration, the CIE coordinates of crystal were observed as x = 0.4390 and y = 0.49410. Three peaks centered at 51, 91 and 126°C of KCl:0.008Pr crystal irradiated with X-ray were observed at the thermo-luminescence (TL) glow curve, the peak parameters were estimated based on the TL data, and the TL property under different X-ray dose has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that they have known the research data policy, and the data are available.

References

  1. P. Kumar, D.R. Roy, Optical and thermoelectric properties of square lattice phases of alkali halide compounds. J. Phys. Chem. Solids 174, 111142 (2023). https://doi.org/10.1016/j.jpcs.2022.111142

    Article  CAS  Google Scholar 

  2. D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, Alkali halides (Springer, Berlin, 2001)

    Book  Google Scholar 

  3. L. Chen, G. Ren, L. Liu, L. Zhou, S. Li, Z. Zhu, J. Zhang, W. Zhang, Y. Li, W.I. Zhang, H. Zhao, J. Han, Probing lattice vibration of alkali halide crystals by broadband terahertz spectroscopy. Spectrochim. Acta Part A. 254, 119671 (2021). https://doi.org/10.1016/j.saa.2021.119671

    Article  CAS  Google Scholar 

  4. M. Ezheiyan, Dopants distribution uniformization in alkali halide single crystals grown from melt. Int. Commun. Heat Mass Transfer 119, 104917 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104917

    Article  CAS  Google Scholar 

  5. D. Joseph Daniel, P. Ramasamy, U. Madhusoodanan, G. Bhagavannarayana, Enhancement of structural perfection of alkali halide single crystals by doping with copper. J. Cryst. Growth. Crystal. 353, 95–1000 (2012). https://doi.org/10.1016/j.jcrysgro.2012.05.005

    Article  CAS  Google Scholar 

  6. Y. Li, Y. Li, X. Sun, C. Li, F. Zeng, X. Zhang, J. Liu, H. Liu, Z. Su, C.K. Mahadevan, Structural, mechanical, electrical and optical properties of NaxK1-xCl:Ce3+ crystals grown in large size by the Czochralski method. Ceram. Int. 47, 34899–34908 (2021). https://doi.org/10.1016/j.ceramint.2021.09.031

    Article  CAS  Google Scholar 

  7. M.A.R. Blijlevens, E.R. Townsend, E.W.J.P. Van, J.A.M. Meijer, V. Elias, Additive induced pseudo-homoepitaxy of nanoneedles on NaCl crystals. J. Cryst. Growth 498, 43–50 (2018). https://doi.org/10.1016/j.jcrysgro.2018.05.022

    Article  CAS  Google Scholar 

  8. G. Selvarajan, C.K. Mahadevan, Studies on (NaCl)x(KBr)y−x(KI)1−y solid solutions: 2 Electrical measurements. J. Mater. Sci. 41, 8218–82225 (2006). https://doi.org/10.1007/s10853-006-0505-x

    Article  CAS  Google Scholar 

  9. A. Biganeh, O. Kakuee, H. Rafi-Kheiri, Positron Annihilation Spectroscopy of KCl (Zn) crystals. Appl. Radiat. Isot. 166, 109330 (2020). https://doi.org/10.1016/j.apradiso.2020.109330

    Article  CAS  Google Scholar 

  10. S. Solgi, F. Samavat, S. Mirzakuchaki, M.S. Ghamsari, Effect of different type of dopants on the enhancement of KCl single crystal optical properties. Optik 241, 166554 (2021). https://doi.org/10.1016/j.ijleo.2021.166554

    Article  CAS  Google Scholar 

  11. S. Perumal, C.K. Mahadevan, Growth and characterization of multiphased mixed crystals of KCl, KBr and KI: 1. Growth and X-ray diffraction studies. Phys. B 369, 89–99 (2005). https://doi.org/10.1016/j.physb.2005.07.034

    Article  CAS  Google Scholar 

  12. L. Sirdeshmukh, G. Sathaiah, P. Devi, Dielectric properties of the KCl-KBr mixed crystal system. Phys. Status Solidi A 99, 631–639 (2010). https://doi.org/10.1002/pssa.2210990235

    Article  Google Scholar 

  13. G. Weiss, M. Hübner, C. Enss, Sound velocity and internal friction of Li-doped KCl. Physica B 263, 388–391 (1999)

    Article  Google Scholar 

  14. M. Hashima, M. Koshimizu, K. Asai, Photo-stimulated luminescence of KCl: Eu under X-ray and ion irradiation. Radiat. Phys. Chem. 78, 1038–1041 (2009). https://doi.org/10.1016/j.radphyschem.2009.06.037

    Article  CAS  Google Scholar 

  15. K.R.E. Saraee, S.A. Hosseini, H. Faripour, M.R. Faiez, M.R. Abdi, N. Soltani, A.A. Khareiky, Thermoluminescence behavior of KClxBr1–x: In mixed crystals exposed. J. Cryst. Growth 402, 161–168 (2014). https://doi.org/10.1016/j.jcrysgro.2014.04.017

    Article  CAS  Google Scholar 

  16. S. Bangaru, G. Muralidharan, Luminescence studies on gamma irradiated KCl: Ce3+ crystals. Phys. B 407, 2185–2189 (2012). https://doi.org/10.1016/j.physb.2012.02.038

    Article  CAS  Google Scholar 

  17. Y. Tosaka, S. Adachi, Photoluminescence properties and energy-level diagrams in (Ce3+, Tb3+)-codoped KCl green phosphor. J. Lumin. 156, 157–163 (2014). https://doi.org/10.1016/j.jlumin.2014.08.010

    Article  CAS  Google Scholar 

  18. P.M. Bhujbal, S.J. Dhoble, KCl: Dy phosphor for thermoluminescence dosimetry of ionizing radiation. Lumin. 28, 879–881 (2013). https://doi.org/10.1002/bio.2450

    Article  CAS  Google Scholar 

  19. K. Sadek, B. Lazhar, S. Miloud, H. Ouahiba, B. Boubekeur, Elaboration and characterization of a KCl single crystal doped with Er3+. Optik 127, 9264–9268 (2016). https://doi.org/10.1016/j.ijleo.2016.07.006

    Article  CAS  Google Scholar 

  20. S. Bangaru, K. Saradhaa, G. Muralidharan, Thermoluminescence and photoluminescence studies on γ-ray-irradiated Ce3+, Tb3+-doped potassium chloride single crystals. Lumin. 31, 649–653 (2016). https://doi.org/10.1002/bio.3005

    Article  CAS  Google Scholar 

  21. S. Bangaru, D. Roobanguru, Luminescence and structural characterization on praseodymium (Pr3+) doped potassium bromide (KBr) single crystals. Luminescence 33, 885–890 (2018). https://doi.org/10.1002/bio.3486

    Article  CAS  Google Scholar 

  22. A.M. Srivastava, Aspects of Pr3+ luminescence in solids. J. Lumin. 169, 445–449 (2016). https://doi.org/10.1016/j.jlumin.2015.07.001

    Article  CAS  Google Scholar 

  23. K. Ivanovskikh, A. Meijerink, C. Ronda, F. Piccinelli, A. Speghini, M. Bettinelli, Fast UV luminescence in Pr-doped eulytite double phosphates. Opt. Mater. 34, 419–423 (2011). https://doi.org/10.1016/j.optmat.2011.04.032

    Article  CAS  Google Scholar 

  24. A. Zych, D.C. de Mello, A. Meijerink, Luminescent salt. J. Lumin. 129, 1535–1537 (2009). https://doi.org/10.1016/j.jlumin.2009.04.059

    Article  CAS  Google Scholar 

  25. Y. Yokota, T. Yanagida, Y. Fujimoto, M. Nikl, A. Yoshikawa, Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method. Radiat. Meas. 45, 472–474 (2010). https://doi.org/10.1016/j.radmeas.2009.11.036

    Article  CAS  Google Scholar 

  26. S. Bangaru, S. Bharani, K. Saradha, Optical, structural, mechanical and magnetic properties on Tb3+ doped KCl single crystals. Radiat. Eff. Defects Solids (2016). https://doi.org/10.1080/10420150.2016.1194414

    Article  Google Scholar 

  27. S.K. Stephen, T. Varghese, Effect of Yb3+ substitution on the structural and optical properties of Ba1-xYbxWO4 nanoparticles-NIR luminescence emissions for optical communication and bioanalyses. Mater Charact 174, 110985 (2021). https://doi.org/10.1016/j.matchar.2021.110985

    Article  CAS  Google Scholar 

  28. I. Taketoshi, Energy transfer processes from I centers to In+ centers at room temperature in co-doped NaCl:I, In+ crystals. J. Lumin. 207, 58–62 (2019). https://doi.org/10.1016/j.jlumin.2018.11.008

    Article  CAS  Google Scholar 

  29. Y. Li, Z. Dong, X. Gan, C. Zhang, R. Wang, X. Zhang, J. Liu, C. Li, L. Wang, C.K. Mahadevan, Eu concentration dependence of the structural, physical and optical properties of NaCl:Eu crystals grown in air. J. Alloys Compd. 920, 165692 (2022). https://doi.org/10.1016/j.jallcom.2022.165692

    Article  CAS  Google Scholar 

  30. A. Raja, G. Annadurai, V. Sivasubramani, K. Ramachandran, R. Kamesh, V. Govindan, P. Vijayakumar, V. Siva, P. Ramasamy, Synthesis, crystal structure, and luminescence properties of RbCaF3:Eu3+ orange-red emitting phosphors for white light emitting diodes. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.11.338

    Article  Google Scholar 

  31. M. Suganya, K. Ganesan, P. Vijayakumar, A.S. Gill, S. Ganesamoorthy, Structural, optical and mechanical properties of Y2Ti2O7 single crystal. Scr. Mater. 187, 227–231 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.016

    Article  Google Scholar 

  32. B. Subramaniam, K.G. Bansigir, Dislocation density and microhardness studies in KCl-KBr mixed crystals. J. Mater. Sci. 15, 2889–2896 (1980). https://doi.org/10.1007/BF00550560

    Article  CAS  Google Scholar 

  33. A.K. Verma, C. Ojha, A.K. Shrivastava, Effect of impurities on the hardness of alkali halide single crystals. AIP Conf. Proc. 1242, 1591 (2014). https://doi.org/10.1063/1.4872917

    Article  CAS  Google Scholar 

  34. J. Borc, K. Sangwal, M. Swietlicki, D. Chocyk, G. Gladyszewski, Vickers microindentation deformation of different cleavage faces of potassium bichromate single crystals: anisotropy in microhardness and crack formation. Mater. Sci. Eng. A 790, 139642 (2020). https://doi.org/10.1016/j.msea.2020.139642

    Article  CAS  Google Scholar 

  35. S. Karan, S.S. Gupta, S.P.S. Gupta, Microhardness and its related physical constants in solution-grown ammonium sulphate single crystals. Mater. Chem. Phys. 69, 143–147 (2001). https://doi.org/10.1016/S0254-0584(00)00362-X

    Article  CAS  Google Scholar 

  36. Y. Li, Y. Li, F. Liu, F. Zeng, X. Zhang, D. Huang, H. Liu, J. Liu, C.K. Mahadevan, Effect of Ce concentration on the structural, mechanical, electrical and optical properties of Ce-doped large-sized KCl0.5Br0.5 crystals. J. Alloys Compd. 884, 161099 (2021). https://doi.org/10.1016/j.jallcom.2021.161099

    Article  CAS  Google Scholar 

  37. Y. Li, X. Sun, F. Meng, S. Xu, C. Wu, E. Qi, X. Zhang, D. Huang, H. Liu, Z. Dong, C.K. Mahadevan, Effect of Pr ion concentration on the physical properties of KCl0.5Br0.5:0.01Ce3+, XPr3+ crystals. J. Mater. Sci. Mater. Electron. 34, 263 (2023). https://doi.org/10.1007/s10854-022-09581-z

    Article  CAS  Google Scholar 

  38. W.A. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16, 62 (1953)

    Article  Google Scholar 

  39. M. Nikl, H. Ogino, A. Yoshikawa, E. Mihokova, J. Pejchal, A. Beitlerova, A. Novoselov, T. Fukuda, Fast 5d→4f luminescence of Pr3+ in Lu2SiO5 single crystal host. Chem. Phys. Lett. 410, 218–221 (2005). https://doi.org/10.1016/j.cplett.2005.04.115

    Article  CAS  Google Scholar 

  40. B. Wang, L. Hang, Y. Yu, D. Chen, Z. Rui, X. Ju, Y. Wang, Ce3+/Pr3+: YAGG: a long persistent phosphor activated by blue-light. J. Am. Ceram. Soc. 97, 2539–2545 (2014). https://doi.org/10.1111/jace.12967

    Article  CAS  Google Scholar 

  41. B. Bhatia, S.L. Meena, The fluorescence of Pr3+ in zinc lithium bismuth borate glasses with large stimulated emission cross section. New J. Glass Ceram. 6, 9–17 (2016). https://doi.org/10.4236/njgc.2016.62002

    Article  CAS  Google Scholar 

  42. Y. Li, C. Wu, X. Sun, C. Ge, X. Zhang, H. Liu, J. Liu, J. Yang, C.K. Mahadevan, Effects of Pr concentration on the structural, mechanical and optical properties of KCl0.5Br0.5:Pr3+ crystals. J. Lumin. 251, 119125 (2022). https://doi.org/10.1016/j.jlumin.2022.119125

    Article  CAS  Google Scholar 

  43. P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds. J. Lumin. 91, 155–176 (2000). https://doi.org/10.1016/S0022-2313(00)00229-5

    Article  CAS  Google Scholar 

  44. Y. Li, S. Xu, F. Meng, H. Jiang, S. Yao, X. Zhang, J. Liu, X. Sun, L. Wang, C.K. Mahadevan, Insight into the structural, mechanical and optical properties of NaCl: Tb crystals for the WLED and TLD applications. Ceram. Int. 49, 28274–28282 (2023). https://doi.org/10.1016/j.ceramint.2023.06.082

    Article  CAS  Google Scholar 

  45. J. Zheng, Q. Cheng, S. Wu, R. Chen, L. Cai, C. Chen, Electronic structure and luminescence properties of Tb3+-activated NaBaBO3 green-emitting phosphor. J. Rare Earths 33, 933 (2015). https://doi.org/10.1016/S1002-0721(14)60508-1

    Article  CAS  Google Scholar 

  46. L. Van Uitert, Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 114, 1048 (1967). https://doi.org/10.1149/1.2424184

    Article  Google Scholar 

  47. G. Annadurai, M. Jayachandiran, S. Masilla Moses Kennedy, V. Sivakumar, Synthesis and photoluminescence properties of Ba2CaZn2Si6O17:Tb3+ green phosphor. Mater. Sci. Eng. B 208, 47 (2016). https://doi.org/10.1016/j.mseb.2016.02.008

    Article  CAS  Google Scholar 

  48. Z. Yang, P. Liu, J. Li, Q. Yang, L. Lv, Y. Zhao, A novel yellow luminescent material Ba3Y(PO4)3:Eu2+. J. Alloys Compd. 578, 118–120 (2013). https://doi.org/10.1016/j.jallcom.2013.05.027

    Article  CAS  Google Scholar 

  49. S.V. Moharil, V.S. Kamavisdar, B.T. Deshmukh, Thermoluminescence of Z1 centres in NaCl:Ca. Phys. Status Solidi 55, K167–K172 (2010). https://doi.org/10.1002/pssa.2210550261

    Article  Google Scholar 

  50. S. Bangaru, G. Muralidharan, G.M. Brahmanandhan, Thermoluminescence and optical studies on X-irradiated terbium-doped potassium bromide crystals. J. Lumin. 130, 618–622 (2010). https://doi.org/10.1016/j.jlumin.2009.11.005

    Article  CAS  Google Scholar 

  51. V. Chernov, R. MelendrezAo, T.M. Piters, M. Barboza-Flores, Thermallyand optically stimulated luminescence correlated processes in X-ray irradiated KCl:Eu2+. Radiat. Meas. 33, 797–800 (2001). https://doi.org/10.1016/S1350-4487(01)00110-X

    Article  CAS  Google Scholar 

  52. R. Chen, On the calculation of activation energies and frequency factors from glow curves. J. Appl. Phys. 40, 570 (1969). https://doi.org/10.1063/1.1657437

    Article  CAS  Google Scholar 

  53. M. Balarin, Half-width and asymmetry of glow peaks and their consistent analytical representation. J. Therm. Anal. 17, 319–332 (1979). https://doi.org/10.1007/BF01914023

    Article  Google Scholar 

Download references

Acknowledgements

This work funded by Changchun Municipal Science and Technology Development Program (21QC08), Jilin Province Development and Reform Commission (2022C040-5), Education Department of Jilin Province (JJKH20210300KJ, JJKH20220267CY) and Department of Science and Technology of JiLin Province (20220508042RC, 20210203206SF, YDZJ202301ZYTS547 and 20230203170SF).

Author information

Authors and Affiliations

Authors

Contributions

YL: Software,Writing- Original draft preparation. GL: Data curation. FM: Visualization. BL: Supervision, Investigation, Resources, Validation. HL: Conceptualization, Writing- Reviewing. XZ: Project administration. XS: Review, Formal analysis. CKM: Review & Editing, Methodology.

Corresponding authors

Correspondence to Bingbing Liu or Xuejian Zhang.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethical approval

This paper comply with Ethical Standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, G., Meng, F. et al. Structure, hardness, optical absorption, photoluminescence and thermoluminescence of Pr ions doped KCl single crystal. J Mater Sci: Mater Electron 35, 26 (2024). https://doi.org/10.1007/s10854-023-11719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11719-6

Navigation