Skip to main content
Log in

Insight into the photoluminescence and thermoluminescence properties of Tb ions doping KCl crystal grown by Cz method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

KCl:xTb [x = 0.0, 0.001, 0.003, 0.005, 0.008, 0.01, 0.04 and 0.07] crystals were grown by the Czochralski method. The structure and optical performance of the crystals were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR), photoluminescence (PL), and thermoluminescence (TL) measurements. XRD results revealed the K+ could be replaced by the Tb3+ ions. FTIR analysis displayed four bands existing in the spectra. PL emission spectra (excitated at 317 nm) indicated the maximum intensity peak at 545 nm corresponding to 5D4 → 7F5 transition of the Tb3+ ions. The main emission peak intensity was found to increase with the increase in Tb concentration up to x = 0.008, and then decrease with the increase of doping ion concentration, the CIE coordinate of KCl:0.008Tb crystal was found as x1 = 0.2819 and y = 0.4425, located in the green region. TL glow curves exhibited higher intense peaks of Tb doping KCl crystal than the pure KCl crystal, and the TL peak parameters (E, s, μg, n0, and b) were also estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The authors confirm that they have known the research data policy, and the data are available.

References

  1. Y. Li, Y. Li, F. Meng, X. Sun, X. Zhang, F. Zeng, H. Liu, Z. Su, C.K. Mahadevan, Effect of Pr ion concentration on the luminescence properties of NaCl:0.01Ce3+,Pr3+ crystals grown in large size. J. Lumin. 239, 118302 (2021). https://doi.org/10.1016/j.jlumin.2021.118302

    Article  CAS  Google Scholar 

  2. D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, Alkali Halides (Springer, Berlin, 2001)

    Book  Google Scholar 

  3. Y. Li, Y. Li, F. Liu, F. Zeng, X. Zhang, D. Huang, H. Liu, J. Liu, C.K. Mahadevan, Effect of Ce concentration on the structural, mechanical, electrical and optical properties of Ce-doped large-sized KCl0.5Br0.5 crystals. J. Alloys Compd. 884, 161099 (2021). https://doi.org/10.1016/j.jallcom.2021.161099

    Article  CAS  Google Scholar 

  4. Y. Li, Y. Li, Z. Yang, X. Zhang, J. Liu, F. Zeng, J. Yao, C. Li, H. Lin, Z. Su, C.K. Mahadevan, Structural, optical and mechanical properties and cracking factors of large-sized KBr:Ce3+ single crystal. J. Electron. Mater. 49, 4785–4793 (2020). https://doi.org/10.1007/s11664-020-08173-z

    Article  CAS  Google Scholar 

  5. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, C.K. Mahadevan, Luminescent and mechanical properties of cerium doped potassium chloride single crystal. Cryst. Res. Technol. (2020). https://doi.org/10.1002/crat.202000060

    Article  Google Scholar 

  6. Y. Li, Y. Li, X. Sun, C. Li, F. Zeng, X. Zhang, J. Liu, H. Liu, Z. Su, C.K. Mahadevan, Structural, mechanical, electrical and optical properties of NaxK1xCl:Ce3+ crystals grown in large size by the Czochralski method. Ceram. Int. 47, 34899–34908 (2021). https://doi.org/10.1016/j.ceramint.2021.09.031

    Article  CAS  Google Scholar 

  7. M.A.R. Blijlevens, E.R. Townsend, E.W.J.P. Van, J.A.M. Meijer, V. Elias, Additive induced pseudo-homoepitaxy of nanoneedles on NaCl crystals. J. Cryst. Growth 498, 43–50 (2018). https://doi.org/10.1016/j.jcrysgro.2018.05.022

    Article  CAS  Google Scholar 

  8. G. Selvarajan, C.K. Mahadevan, Studies on (NaCl)x(KBr)yx(KI)1−y solid solutions: 2. Electrical measurements. J. Mater. Sci. 41, 8218–82225 (2006). https://doi.org/10.1007/s10853-006-0505-x

    Article  CAS  Google Scholar 

  9. Y. Li, Y. Li, F. Meng, X. Zhang, F. Zeng, J. Liu, H. Liu, J. Wang, C.K. Mahadevan, Effect of cooling time on the structural, optical, mechanical, thermal and electrical properties of KCl1xBrx crystals formed directly on cooling the melt. J. Mater. Sci. Mater. Electron. 32, 15425–15440 (2021). https://doi.org/10.1007/s10854-021-06091-2

    Article  CAS  Google Scholar 

  10. S. Solgi, F. Samavat, S. Mirzakuchaki, M.S. Ghamsari, Effect of different type of dopants on the enhancement of KCl single crystal optical properties. Optik 241, 166554 (2021). https://doi.org/10.1016/j.ijleo.2021.166554

    Article  CAS  Google Scholar 

  11. S. Perumal, C.K. Mahadevan, Growth and characterization of multiphased mixed crystals of KCl, KBr and KI: 1. Growth and X-ray diffraction studies. Physica B 369, 89–99 (2005). https://doi.org/10.1016/j.physb.2005.07.034

    Article  CAS  Google Scholar 

  12. Y. Li, X. Sun, F. Meng, S. Xu, C. Wu, E. Qi, X. Zhang, D. Huang, H. Liu, Z. Dong, C.K. Mahadevan, Effect of Pr ion concentration on the physical properties of KCl0.5Br0.5:0.01Ce3+,XPr3+ crystals. J. Mater. Sci. Mater. Electron. 34, 263 (2023). https://doi.org/10.1007/s10854-022-09581-z

    Article  CAS  Google Scholar 

  13. G. Weiss, M. Hübner, C. Enss, Sound velocity and internal friction of Li-doped KCl. Physica B 263, 388–391 (1999)

    Article  Google Scholar 

  14. M. Hashima, M. Koshimizu, K. Asai, Photo-stimulated luminescence of KCl:Eu under X-ray and ion irradiation. Radiat. Phys. Chem. 78, 1038–1041 (2009). https://doi.org/10.1016/j.radphyschem.2009.06.037

    Article  CAS  Google Scholar 

  15. K.R.E. Saraee, S.A. Hosseini, H. Faripour, M.R. Faiez, M.R. Abdi, N. Soltani, A.A. Khareiky, Thermoluminescence behavior of KClxBr1–x: in mixed crystals exposed. J. Cryst. Growth 402, 161–168 (2014). https://doi.org/10.1016/j.jcrysgro.2014.04.017

    Article  CAS  Google Scholar 

  16. S. Bangaru, G. Muralidharan, Luminescence studies on gamma irradiated KCl: Ce3+ crystals. Physica B 407, 2185–2189 (2012). https://doi.org/10.1016/j.physb.2012.02.038

    Article  CAS  Google Scholar 

  17. S. Polosan, T. Tsuboi, E. Apostol, V. Topa, Electrolytic reduction of Tl+ ions in KCl crystals. Opt. Mater. 30, 95–97 (2007). https://doi.org/10.1016/j.optmat.2006.11.006

    Article  CAS  Google Scholar 

  18. Y. Kohzuki, T. Ohgaku, Study on luminescence of KCl:Eu2+ crystals after X-ray irradiation at room temperature. Crystals 9, 331 (2019). https://doi.org/10.3390/cryst9070331

    Article  CAS  Google Scholar 

  19. Y. Tosaka, S. Adachi, Photoluminescence properties and energy-level diagrams in (Ce3+, Tb3+)-codoped KCl green phosphor. J. Lumin. 156, 157–163 (2014). https://doi.org/10.1016/j.jlumin.2014.08.010

    Article  CAS  Google Scholar 

  20. P.M. Bhujbal, S.J. Dhoble, KCl:Dy phosphor for thermoluminescence dosimetry of ionizing radiation. Luminescence 28, 879–881 (2013). https://doi.org/10.1002/bio.2450

    Article  CAS  Google Scholar 

  21. K. Sadek, B. Lazhar, S. Miloud, H. Ouahiba, B. Boubekeur, Elaboration and characterization of a KCl single crystal dopedwith Er3+. Optik 127, 9264–9268 (2016). https://doi.org/10.1016/j.ijleo.2016.07.006

    Article  CAS  Google Scholar 

  22. S. Bangaru, K. Saradhaa, G. Muralidharan, Thermoluminescence and photoluminescence studies on γ-ray-irradiated Ce3+, Tb3+-doped potassium chloride single crystals. Luminescence 31, 649–653 (2016). https://doi.org/10.1002/bio.3005

    Article  CAS  Google Scholar 

  23. S. Bangaru, S. Bharani, K. Saradha, Optical, structural, mechanical and magnetic properties on Tb3+ doped KCl single crystals. Radiat. Eff. Defects Solids (2016). https://doi.org/10.1080/10420150.2016.1194414

    Article  Google Scholar 

  24. S. Bangaru, D. Ravi, K. Saradha, Comparison of luminescence property of gamma-ray irradiated Tb3+-doped and Ce3+ co-doped potassium halide single crystals. Luminescence 32, 358–363 (2017). https://doi.org/10.1002/bio.3187

    Article  CAS  Google Scholar 

  25. S.K. Stephen, T. Varghese, Effect of Yb3+ substitution on the structural and optical properties of Ba1xYbxWO4 nanoparticles-NIR luminescence emissions for optical communication and bioanalyses. Mater Charact 174, 110985 (2021). https://doi.org/10.1016/j.matchar.2021.110985

    Article  CAS  Google Scholar 

  26. Y. Li, Z. Dong, X. Gan, C. Zhang, R. Wang, X. Zhang, J. Liu, C. Li, L. Wang, C.K. Mahadevan, Eu concentration dependence of the structural, physical and optical properties of NaCl:Eu crystals grown in air. J. Alloys Compd. 920, 165692 (2022). https://doi.org/10.1016/j.jallcom.2022.165692

    Article  CAS  Google Scholar 

  27. Z.C. Wu, P. Wang, L. Jie, L. Chao, W.H. Zhou, S.P. Kuang, Improved photoluminescence properties of a new green SrB2O4:Tb3+ phosphor bycharge compensation. Mater. Res. Bull. 47, 3413–3416 (2012). https://doi.org/10.1016/j.materresbull.2012.07.013

    Article  CAS  Google Scholar 

  28. S.M. Hsu, S.W. Yung, Y.C. Hsu, F.B. Wu, Y.M. Lee, Enhancement of luminescence properties and the role of ZnO in Tb3+ ions doped zinc aluminum phosphate glasses. Ceram. Int. 42, 4019–4025 (2016). https://doi.org/10.1016/10.1016/j.ceramint.2015.11.071

    Article  CAS  Google Scholar 

  29. S. Sharma, S. Jana, S. Mitra, Spectroscopic and structural properties of 1 mol% Tb3+ doped 2B2O3 + 5ZnO + 30PbO + 62P2O5 glass for green laser application. Ceram. Int. 46, 6787–6795 (2020). https://doi.org/10.1016/j.ceramint.2019.11.170

    Article  CAS  Google Scholar 

  30. W. Huang, Z. Wen, L. Li, G.A. Ashraf, L. Chen, L. Lei, H. Guo, X. Li, Photoluminescence and X-ray excited scintillating properties of Tb3+-doped borosilicate aluminate glass scintillators. Ceram. Int. 48, 17178–17184 (2022). https://doi.org/10.1016/j.ceramint.2022.02.274

    Article  CAS  Google Scholar 

  31. R. Liu, D. Wang, M. Chen, L. Liu, Y. Zhou, F. Zeng, Z. Su, Luminescence, energy transfer properties of Dy3+/Eu3+ coactivated neutral and warm white emissions GSBG glasses. J. Lumin. 237, 118180 (2021). https://doi.org/10.1016/j.jlumin.2021.118180

    Article  CAS  Google Scholar 

  32. Y. Li, S. Xu, F. Meng, H. Jiang, S. Yao, X. Zhang, J. Liu, X. Sun, L. Wang, C.K. Mahadevan, Insight into the structural, mechanical and optical properties of NaCl:Tb crystals for the WLED and TLD applications. Ceram. Int. 49, 28274–28282 (2023). https://doi.org/10.1016/j.ceramint.2023.06.082

    Article  CAS  Google Scholar 

  33. D. He, C. Yu, J. Cheng, S. Li, L. Hu, Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass. J. Alloys Compd. 509, 1906–1909 (2011). https://doi.org/10.1016/j.jallcom.2010.10.085

    Article  CAS  Google Scholar 

  34. R. Kameshwaran, O. Annalakshmi, A. K, P. Balaji Bhargav, Novel green emitting Tb3+ doped KCaF3 phosphor for WLEDs and TLD applications. Ceram. Int. 49, 8005–8014 (2023). https://doi.org/10.1016/j.ceramint.2022.10.316

    Article  CAS  Google Scholar 

  35. J. Zheng, Q. Cheng, S. Wu, R. Chen, L. Cai, C. Chen, Electronic structure and luminescence properties of Tb3+-activated NaBaBO3 green-emitting phosphor. J. Rare Earths 33, 933 (2015). https://doi.org/10.1016/S1002-0721(14)60508-1

    Article  CAS  Google Scholar 

  36. L. Van Uitert, Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 114, 1048 (1967). https://doi.org/10.1149/1.2424184

    Article  Google Scholar 

  37. G. Annadurai, M. Jayachandiran, S. Masilla Moses Kennedy, V. Sivakumar, Synthesis and photoluminescence properties of Ba2CaZn2Si6O17:Tb3+ green phosphor. Mater. Sci. Eng. B 208, 47 (2016). https://doi.org/10.1016/j.mseb.2016.02.008

    Article  CAS  Google Scholar 

  38. Y. Zheng, T. Yang, Y. Xiang, K. Xiong, D. Yang, Z. Fang, S. Yang, J. Zhu, Ba3(ZnB5O10)PO4:Tb3+ green phosphor: microwave-assisted sintering synthesis and thermally stable photoluminescence. J. Alloys Compd. 911, 165087 (2022). https://doi.org/10.1016/j.jallcom.2022.165087

    Article  CAS  Google Scholar 

  39. R. Ananda Kumari, R. Chandramani, Color center studies in KBreNaI mixed crystals doped with gold. Radiat. Meas. 46, 1368–1371 (2011). https://doi.org/10.1016/j.radmeas.2011.08.003

    Article  CAS  Google Scholar 

  40. S.V. Moharil, V.S. Kamavisdar, B.T. Deshmukh, Thermoluminescence of Z1 centres in NaCl:Ca. Phys. Status Solidi 55, K167–K172 (2010). https://doi.org/10.1002/pssa.2210550261

    Article  Google Scholar 

  41. A. Hernandez-Medina, A. Negron-Mendoza, S. Ramos-Bernal, M. Colin-Garcia, The effect of doses, irradiation temperature, and doped impurities in the thermoluminescence response of NaCl crystals. Radiat. Meas. 56, 369–373 (2013). https://doi.org/10.1016/j.radmeas.2013.01.040

    Article  CAS  Google Scholar 

  42. S. Bangaru, G. Muralidharan, G.M. Brahmanandhan, Thermoluminescence and optical studies on X-irradiated terbium-doped potassium bromide crystals. J. Lumin. 130, 618–622 (2010). https://doi.org/10.1016/j.jlumin.2009.11.005

    Article  CAS  Google Scholar 

  43. S. Bangarua, G. Muralidharan, Thermoluminescence and optical studies on γ-ray irradiated KCl:Tb3+ crystals. Radiat. Eff. Defects Solids 169, 9–18 (2014). https://doi.org/10.1080/10420150.2013.804824

    Article  CAS  Google Scholar 

  44. R. Chen, On the calculation of activation energies and frequency factors from glow curves. J. Appl. Phys. 40, 570 (1969). https://doi.org/10.1063/1.1657437

    Article  CAS  Google Scholar 

  45. M. Balarin, Half-width and asymmetry of glow peaks and their consistent analytical representation. J. Therm. Anal. 17, 319–332 (1979). https://doi.org/10.1007/BF01914023

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from Jilin Province Development and Reform Commission (2022C040-5), Changchun Science and Technology Bureau (21QC08), Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University in Changchun Province (JLZHKF022021001), Education Department of Jilin Province (JJKH20210300KJ, JJKH20220267CY) and Department of Science and Technology of JiLin Province (20220508042RC, 20210203206SF, YDZJ202301ZYTS547 and 20230203170SF).

Author information

Authors and Affiliations

Authors

Contributions

YL: software, writing—original draft preparation. SX: data curation. FM: visualization. HL: resources, validation. SS: supervision, investigation. BL: conceptualization, writing—reviewing. XZ: project administration. XS: review, formal analysis. CKM: review and editing, methodology.

Corresponding authors

Correspondence to Bingbing Liu, Xuejian Zhang or C. K. Mahadevan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This paper comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, S., Meng, F. et al. Insight into the photoluminescence and thermoluminescence properties of Tb ions doping KCl crystal grown by Cz method. J Mater Sci: Mater Electron 34, 2163 (2023). https://doi.org/10.1007/s10854-023-11424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11424-4

Navigation