Skip to main content
Log in

Au-sensitized ZnO nanostructures for efficient photoelectrochemical splitting of water

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, different structures of ZnO, such as nanorods (NR), nanosheets (NS), nanowires (NW), and nanospheres (NSP), were synthesized and then sensitized with Au plasmons for efficient photoelectrochemical splitting of water. The electrodeposition method was used to realize different ZnO nanostructures and decorate them with Au nanoparticles. X-ray diffraction (XRD) confirms the hexagonal wurtzite structure of ZnO photoanodes, and the average crystal size was ~ 30 nm. The morphology of ZnO nanostructures depends on the concentration of Zn(NO3)2 .6H2O, and a variation in it leads to the evolution of nanorods, nanosheets, nanowires, and nanospheres. UV–visible and photoluminescence (PL) spectroscopy give the bandgap value (~ 3.1 eV) and good absorption in the visible region on decoration with Au plasmons. The photoelectrochemical (PEC) splitting of water experiment results indicate that the photoanode of ZnO-NS (0.05 M) loaded with Au plasmons-based photoanode has better performance with 0.38% efficiency and a photocurrent density of 0.68 mA/cm2. Different ZnO photoanodes can be designed and constructed containing various types of ZnO morphology for efficient PEC water splitting, as evident from the preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. P. Shinde, V. Sharma, A. Punde, A. Waghmare, P. Vairale, Y. Hase, S. Pandharkar, A. Bhorde, R. Aher, S. Nair, V. Doiphode, V. Jadkar, N. Patil, S. Rondiya, M. Prasad, S. Jadkar, 2D alignment of zinc oxide@ZIF8 nanocrystals for photoelectrochemical water splitting. New J. Chem. 45, 3498–3507 (2021). https://doi.org/10.1039/D0NJ05567K

    Article  CAS  Google Scholar 

  2. S. Sharma, S. Singh, N. Khare, Enhanced photosensitization of zinc oxide nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting. Int. J. Hydrogen Energy 41, 21088–21098 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.131

    Article  CAS  Google Scholar 

  3. Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017). https://doi.org/10.1002/aenm.201700555

    Article  CAS  Google Scholar 

  4. P. Subramanyam, B. Meena, V. Biju, H. Misawa, S. Challapalli, Emerging materials for plasmon-assisted photoelectrochemical water splitting. J. Photochem. Photobiol. C Photochem. Rev. 51, 100472 (2022). https://doi.org/10.1016/j.jphotochemrev.2021.100472

    Article  CAS  Google Scholar 

  5. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 3738 (1972). https://doi.org/10.1038/238037a0

    Article  Google Scholar 

  6. J. Han, Z. Liu, Optimization and modulation strategies of zinc oxide-based photoanodes for highly efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 4, 1004–1013 (2021). https://doi.org/10.1021/acsaem.0c02985

    Article  CAS  Google Scholar 

  7. M. Liu, C.Y. Nam, C.T. Black, J. Kamcev, L. Zhang, Enhancing water splitting activity and chemical stability of zinc oxide nanowire photoanodes with ultrathin titania shells. J. Phys. Chem. C 117, 13396–13402 (2013). https://doi.org/10.1021/jp404032p

    Article  CAS  Google Scholar 

  8. S. Shet, Y. Yan, H. Wang, N. Ravindra, J. Turner, M. Al Jassim, Synthesis of ZnO nanostructures and their influence on photoelectrochemical response for solar driven water splitting to produce hydrogen. Advances and applications in electroceramics II-materials science and technology. Adv. Nanomater. Nanostruct. 229, 231 (2012). https://doi.org/10.1002/9781118144602.ch14

    Article  Google Scholar 

  9. A.K. Chandiran, M. Abdi-Jalebi, M.K. Nazeeruddin, M. Grätzel, Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano 8, 2261–2268 (2014). https://doi.org/10.1021/nn405535j

    Article  CAS  Google Scholar 

  10. C. Li, S. Chen, Y. Wang, Z. Hou, ZnO/ZnS heterostructures grown on Zn foil substrate by hydrothermal method for photoelectrochemical water splitting. Int. J. Hydrogen Energy 44, 25416–25427 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.206

    Article  CAS  Google Scholar 

  11. C. Cheng, K.R. Gustavsen, K. Wang, Plasmon-induced visible light absorption arising from edge-interfaces of titanium-oxides nanocomposites. Opt. Mater. 113, 110847 (2021). https://doi.org/10.1016/j.optmat.2021.110847

    Article  CAS  Google Scholar 

  12. M.Z. Iqbal, S. Siddique, Recent progress in efficiency of hydrogen evolution process based photoelectrochemical cell. Int. J. Hydrogen Energy 43, 21502–21523 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.157

    Article  CAS  Google Scholar 

  13. S. Cho, J.W. Jang, K.H. Lee, J.S. Lee, Research update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater. 2, 010703 (2014). https://doi.org/10.1063/1.4861798

    Article  CAS  Google Scholar 

  14. Y. Liu, X. Yan, Z. Kang, Y. Li, Y. Shen, Y. Sun, L. Wang, Y. Zhang, Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 6, 29907 (2016). https://doi.org/10.1038/srep29907

    Article  CAS  Google Scholar 

  15. M. Prasad, V. Sharma, R. Aher, A. Rokade, P. Ilaiyaraja, C. Sudakar, S. Jadkar, Synergistic effect of Ag plasmon- and reduced graphene oxide-embedded ZnO nanorod-based photoanodes for enhanced photoelectrochemical activity. J. Mater. Sci. 52, 13572–13585 (2017). https://doi.org/10.1007/s10853-017-1436-4

    Article  CAS  Google Scholar 

  16. H. Li, Z. Li, Y. Yu, Y. Ma, W. Yang, F. Wang, X. Yin, X. Wang, Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO2 nanorod architectures. J. Phys. Chem. C 121, 12071–12079 (2017). https://doi.org/10.1021/acs.jpcc.7b03566

    Article  CAS  Google Scholar 

  17. C. Mahala, M.D. Sharma, M. Basu, Near-field and far-field plasmonic effects of gold nanoparticles decorated on ZnO nanosheets for enhanced solar water splitting. ACS Appl. Nano Mater. 3, 1153–1165 (2020). https://doi.org/10.1021/acsanm.9b01678

    Article  CAS  Google Scholar 

  18. M. Zayed, N. Nasser, M. Shaban, H. Alshaikh, H. Hamdy, A.M. Ahmed, Effect of morphology and plasmonic on Au/ZnO films for efficient photoelectrochemical water splitting. Nanomaterials 11(9), 2338 (2021). https://doi.org/10.3390/nano11092338

    Article  CAS  Google Scholar 

  19. S.A. Saboor, V. Sharma, E.L. Darboe, V. Doiphode, A. Punde, P. Shinde, V. Jadkar, Y. Hase, A. Waghmare, M. Prasad, S. Jadkar, Influence of Au plasmons and their synergistic effects with ZnO nanorods for photoelectrochemical water splitting applications. J. Mater. Sci. Mater. Electron. 32, 20525–20538 (2021). https://doi.org/10.1007/s10854-021-06564-4

    Article  CAS  Google Scholar 

  20. H. Li, H. Liu, F. Wang, G. Li, X. Wang, Z. Tang, Hot electron assisted photoelectrochemical water splitting from Au-decorated ZnO@TiO2 nanorods array. Nano Res. 15, 5824–5830 (2022). https://doi.org/10.1007/s12274-022-4203-z

    Article  CAS  Google Scholar 

  21. M. Wu, W.J. Chen, Y.H. Shen, F.Z. Huang, C.H. Li, S.K. Li, In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 6, 15052–15060 (2014). https://doi.org/10.1021/am503044f

    Article  CAS  Google Scholar 

  22. Z. Yan, H. Liu, Z. Hao, M. Yu, X. Chen, J. Chen, Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chem. Sci. 11, 10614–10625 (2020). https://doi.org/10.1039/D0SC01532F

    Article  CAS  Google Scholar 

  23. C. Chang, S. Zhu, X. Liu, Y. Chen, Y. Sun, Y. Tang, P. Wan, J. Pan, One-step electrodeposition synthesis of bimetal Fe- and co-doped NiPi/P for highly efficient overall water splitting. Ind. Eng. Chem. Res. 60, 2070–2078 (2021). https://doi.org/10.1021/acs.iecr.0c05365

    Article  CAS  Google Scholar 

  24. M. Zayed, N. Nasser, M. Shaban, H. Alshaikh, H. Hamdy, A.M. Ahmed, Effect of morphology and plasmonic on Au/ZnO films for efficient photoelectrochemical water splitting. Nanomaterials 1(9), 2338–19 (2021). https://doi.org/10.3390/nano11092338

    Article  CAS  Google Scholar 

  25. X. Zheng, Z. Zhang, S. Meng, Y. Wang, D. Li, Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. Chem. Eng. J. s 393, 124676 (2020). https://doi.org/10.1016/j.cej.2020.124676

    Article  CAS  Google Scholar 

  26. A.C. Guler, J. Antoš, M. Masař, M. Urbánek, M. Machovský, I. Kuřitka, Boosting the photoelectrochemical performance of Au/ZnO nanorods by co-occurring gradient doping and surface plasmon modification. Int. J. Mol. Sci. 24(1), 443 (2022). https://doi.org/10.3390/ijms24010443

    Article  CAS  Google Scholar 

  27. X. Shao, B. Li, B. Zhang, L. Shao, Y. Wu, Au@ ZnO core–shell nanostructures with plasmon-induced visible-light photocatalytic and photoelectrochemical properties. Inorg. Chem. Front. 3(7), 934–943 (2016). https://doi.org/10.1039/C6QI00064A

    Article  CAS  Google Scholar 

  28. W. Zhang, W. Wang, H. Shi, Y. Liang, J. Fu, M. Zhu, Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable Au nanoparticles. Sol. Energy Mater. Sol. Cells 180, 25–33 (2018). https://doi.org/10.1016/j.solmat.2018.02.020

    Article  CAS  Google Scholar 

  29. P. Muhammed Shafi, A. Chandra Bose, Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. 5, 057137 (2015). https://doi.org/10.1063/1.4921452

    Article  CAS  Google Scholar 

  30. A.R. Marlinda, N. Yusoff, A. Pandikumar, N.M. Huang, O. Akbarzadeh, S. Sagadevan, Y.A. Wahab, M.R. Johan, Tailoring morphological characteristics of zinc oxide using a one-step hydrothermal method for photoelectrochemical water splitting application. Int. J. Hydrogen Energy 44, 17535–17543 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.109

    Article  CAS  Google Scholar 

  31. K.R. Nandanapalli, D. Mudusu, J.S. Yu, S. Lee, Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications. J. Colloid Interface Sci. 558, 9–20 (2020). https://doi.org/10.1016/j.jcis.2019.09.086

    Article  CAS  Google Scholar 

  32. P.J. Scherrer, Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen. 2, 96–100 (1918)

    Google Scholar 

  33. J.I. Langford, A.J. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  34. V.L. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 58(10), 883–91 (2007). https://doi.org/10.1016/j.matchar.2006.09.002

    Article  CAS  Google Scholar 

  35. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  36. X.D. Zhang, P. Wu, Y.Y. Shen, L.H. Zhang, Y.H. Xue, F. Zhu, D.C. Zhang, Liu CL (2011) Structural and optical properties of Au-implanted ZnO films. Appl. Surf. Sci. 258(1), 151–157 (2011). https://doi.org/10.1016/j.apsusc.2011.08.022

    Article  CAS  Google Scholar 

  37. B. Yahmadi, N. Kamoun, C. Guasch, Bennaceur R (2011) Synthesis and characterization of nanocrystallized In2S3 thin films via CBD technique. Mater. Chem. Phys. 127(1–2), 239–247 (2011). https://doi.org/10.1016/j.matchemphys.2011.01.066

    Article  CAS  Google Scholar 

  38. A. Janotti, C.G. Van De Walle, Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005). https://doi.org/10.1063/1.2053360

    Article  CAS  Google Scholar 

  39. S. Fiedler, L.O. Lee Cheong Lem, C. Ton That, A. Hoffmann, M.R. Phillips, Enhancement of the UV emission from gold/ZnO nanorods exhibiting no green luminescence. Opt. Mater. Express 10, 1476–1487 (2020). https://doi.org/10.1364/OME.381527

    Article  CAS  Google Scholar 

  40. F. Rasouli, A. Rouhollahi, F. Ghahramanifard, Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting. Superlattices Microstruct. 125, 177–189 (2019). https://doi.org/10.1016/j.spmi.2018.08.026

    Article  CAS  Google Scholar 

  41. P.P. Patel, P.J. Hanumantha, O.I. Velikokhatnyi, M.K. Datta, D. Hong, B. Gattu, J.A. Poston, A. Manivannan, P.N. Kumta, Nitrogen and cobalt co-doped zinc oxide nanowires—viable photoanodes for hydrogen generation via photoelectrochemical water splitting. J. Power. Sources 299, 11–24 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.027

    Article  CAS  Google Scholar 

  42. N.S.K. Gowthaman, J.W. Chen, C.F. Dee, S.P. Chai, W.S. Chang, Nanostructural dimension and oxygen vacancy synergistically induced photoactivity across high surface area monodispersed AuNPs/ZnO nanorods heterojunction. J. Alloys Compd. 920, 165836 (2022). https://doi.org/10.1016/j.jallcom.2022.165836

    Article  CAS  Google Scholar 

  43. A. Machín, M. Cotto, J. Duconge, J.C. Arango, C. Morant, S. Pinilla, V.L. Soto, E. Resto, F. Márquez, Hydrogen production via water splitting using different Au@ZnO catalysts under UV-vis irradiation. J. Photochem. Photobiol. A 353, 385–394 (2018). https://doi.org/10.1016/j.jphotochem.2017.11.050

    Article  CAS  Google Scholar 

  44. H.M. Chen, C.K. Chen, C.J. Chen, L.C. Cheng, P.C. Wu, B.H. Cheng, Y.Z. Ho, M.L. Tseng, Y.Y. Hsu, T.S. Chan, J.F. Lee, R.S. Liu, D.P. Tsai, Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. ACS Nano 6, 7362–7372 (2012). https://doi.org/10.1021/nn3024877

    Article  CAS  Google Scholar 

  45. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv. Funct. Mater. 19, 1849–1856 (2009). https://doi.org/10.1002/adfm.200801363

    Article  CAS  Google Scholar 

  46. C.F. Windisch, G.J. Exarhos, Mott-Schottky analysis of thin ZnO films. J. Vac. Sci. Technol. A 18, 1677 (2000). https://doi.org/10.1116/1.582406

    Article  CAS  Google Scholar 

  47. A. Ahmadi, M. Zargar Shoushtari, Enhancing the photoelectrochemical water splitting performance of WS2 nanosheets by doping titanium and molybdenum via a low-temperature CVD method. J. Electroanal. Chem. 849, 113361 (2019). https://doi.org/10.1016/j.jelechem.2019.113361

    Article  CAS  Google Scholar 

  48. K. Gelderman, L. Lee, S.W. Donne, Flat-band potential of a semiconductor: using the Mott-Schottky equation. J. Chem. Educ. 84, 685 (2007). https://doi.org/10.1021/ed084p685

    Article  CAS  Google Scholar 

  49. C. Poole, I. Darwazeh, Microwave Semiconductor Materials and Diodes Microwave Active Circuit Analysis and Design, pp. 355 (Elsevier, Amsterdam, 2016). ISBN: 8120324188, 9788120324183

  50. R.B. Wei, P.Y. Kuang, H. Cheng, Y.B. Chen, J.Y. Long, M.Y. Zhang, Z.Q. Liu, Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustain. Chem. Eng. 5, 4249–4257 (2017). https://doi.org/10.1021/acssuschemeng.7b00242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Shruti Shah, Vidya Doiphode, Pratibha Shinde, Ashish Waghmare, Yogesh Hase, and Bharat Bade are grateful to the Ministry of New and Renewable Energy (MNRE), Government of India New Delhi, for the National Renewable Energy (NRE) fellowship and financial assistance. Ashvini Punde is thankful to the Mahatma Jyotiba Phule Research and Training Institute (MAHAJYOTI), Government of Maharashtra, for the Mahatma Jyotiba Phule Research Fellowship (MJPRF). Swati Rahane is thankful for the research fellowship to the Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARTHI), Government of Maharashtra. In addition, Vidhika Sharma, and Sandesh Jadkar are thankful to the Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi, for special financial support.

Author information

Authors and Affiliations

Authors

Contributions

ELD contributed toward methodology, formal analysis, investigation, data curation, and writing-original draft. SM contributed toward formal analysis and data curation. SS contributed toward methodology, validation, formal analysis, and investigation. VS contributed toward formal analysis, data curation, and writing-original draft. BB contributed toward conceptualization, validation, formal analysis, and investigation. SR: contributed toward data curation, formal analysis, and nvestigation. VD contributed toward methodology, validation, formal analysis, and investigation. PS contributed toward conceptualization, validation, formal analysis, and investigation. AW contributed toward methodology, formal analysis, Iivestigation, and data curation. YH contributed toward methodology, conceptualization, validation, formal analysis, and investigation. AP contributed toward methodology, validation, formal analysis, and investigation. SL contributed toward data curation, formal analysis, and nvestigation. MP contributed toward data curation, writing-review, and editing. SJ contributed toward visualization, writing-review, editing, supervision, and funding acquisition.

Corresponding authors

Correspondence to Mohit Prasad or Sandesh Jadkar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darboe, E.L., Mosamem, S.A.S., Shah, S. et al. Au-sensitized ZnO nanostructures for efficient photoelectrochemical splitting of water. J Mater Sci: Mater Electron 34, 2300 (2023). https://doi.org/10.1007/s10854-023-11713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11713-y

Navigation