Skip to main content

Advertisement

Log in

Influence of Au plasmons and their synergistic effects with ZnO nanorods for photoelectrochemical water splitting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, Au plasmons and their synergistic effects with ZnO nanorods (ZNs) have been investigated for photoelectrochemical (PEC) water splitting application. Au plasmons and ZNs are deposited electrochemically. Au-modified nanostructures have absorption in the visible region as plasmons enhance charge transfer and inhibit charge recombination. ZNs modified with Au (deposition duration ~ 60 s) have a photo-current density of ~ 660 μA cm−2, at a bias of 1.0 V/SCE. X-ray diffraction (XRD) and scanning electron microscopy were used to study the structure and surface morphology of fabricated photoanodes. In addition, UV–Visible absorption and Photoluminescence spectroscopy were used for optical characterization. We have recorded current–voltage measurements and photo-conversion efficiency measurements to substantiate our observations of the synthesized photoanodes for future application in PEC splitting of water. We have also carried out Mott-Schottky and electrochemical impedance spectroscopy analysis. The analysis reveals that Au-modified ZNs-based photoanodes are a better proposition than their bare counterparts for PEC water splitting application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.G. Nocera, The artificial leaf. Acc. Chem. Res. 45(5), 767–776 (2012)

    Article  CAS  Google Scholar 

  2. Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting. Nat. Photon 6, 511–518 (2012)

    Article  CAS  Google Scholar 

  3. I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40(34), 11094–11111 (2015)

    Article  CAS  Google Scholar 

  4. C. Acar, I. Dincer, Experimental investigation and analysis of a hybrid photoelectrochemical hydrogen production system. Int. J. Hydrog. Energy 39(28), 15362–15372 (2014)

    Article  CAS  Google Scholar 

  5. Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties and outlook. Energy Environ. Sci. 6, 347–370 (2013)

    Article  CAS  Google Scholar 

  6. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy Materials-related aspects. Int. J. Hydrog. Energy 27, 991–1022 (2002)

    Article  CAS  Google Scholar 

  7. X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    Article  CAS  Google Scholar 

  8. Z. Chen, H. Dinh, E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental, Methods and Protocols (Springer, New York, 2013)

    Book  Google Scholar 

  9. M. Prasad, V. Sharma, A. Rokade, S. Jadkar, Photoelectrochemical cell: a versatile device for sustainable hydrogen production. Photoelectrochem. Sol Cells 30, 59–119 (2018)

    Article  Google Scholar 

  10. Y. Sivan, Y. Dubi, Recent developments in plasmon-assisted phototcatalysis-A personal perspective. Appl. Phys. Lett. 117, 130501 (2020)

    Article  CAS  Google Scholar 

  11. W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013)

    Article  CAS  Google Scholar 

  12. M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)

    Article  CAS  Google Scholar 

  13. F. Wu, X. Hu, J. Fan, E. Liu, T. Sun, L. Kang, W. Hou, C. Zhu, H. Liu, Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8(2), 501–508 (2013)

    Article  CAS  Google Scholar 

  14. J. Lee, S. Mubeen, X. Ji, G.D. Stucky, M. Moskovits, Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 12, 5014–5019 (2012)

    Article  CAS  Google Scholar 

  15. Y. Wei, L. Ke, J. Kong, H. Liu, H. Jiao, X. Lu, H. Du, X.W. Sun, Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology 23, 235401–235409 (2012)

    Article  CAS  Google Scholar 

  16. X. Zhang, Y. Liu, Z. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. Appl. Mater. Interfaces 6, 4480–4489 (2014)

    Article  CAS  Google Scholar 

  17. J. Li, S.K. Cushing, P. Zheng, F. Meng, D. Chu, N. Wu, Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4, 2651–2659 (2013)

    Article  CAS  Google Scholar 

  18. I. Zhang, C.Y. Lin, V.K. Valev, E. Reisner, U. Steiner, J.J. Baumberg, Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small 10, 3970–3978 (2014)

    Article  CAS  Google Scholar 

  19. Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng, H. Zhang, Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Small 10, 3537–3543 (2014)

    Article  CAS  Google Scholar 

  20. A. Sheikh, A. Yengantiwar, M. Deo, S. Kelkar, S. Ogale, Near-field plasmonic functionalization of light harvesting oxide–oxide heterojunctions for efficient solar photoelectrochemical water splitting: the AuNP/ZnFe2O4/ZnO system. Small 9, 2091–2096 (2013)

    Article  CAS  Google Scholar 

  21. Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, H. Misawa, Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy. Angew Chem. Int. Ed. 53, 10350–10354 (2014)

    Article  CAS  Google Scholar 

  22. W.T. Kung, Y.H. Pai, Y.K. Hsu, C.H. Lin, C.M. Wang, Surface plasmon assisted CuxO photocatalyst for pure water splitting. Opt. Express 21, A221–A228 (2013)

    Article  CAS  Google Scholar 

  23. X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009)

    Article  CAS  Google Scholar 

  24. M. Gupta, V. Sharma, J. Shrivastava, A. Solanki, A.P. Singh, V.R. Satsangi, S. Dass, R. Shrivastav, Preparation and characterization of nanostructured ZnO thin films for photoelectrochemical splitting of water. Bull. Mater. Sci. 32, 23–30 (2009)

    Article  CAS  Google Scholar 

  25. J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong, High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Appl. Catal. B 163, 179–188 (2015)

    Article  CAS  Google Scholar 

  26. T. Hong, Z. Liu, H. Liu, L. Junqi, X. Zhang, J. Han, K. Guo, B. Wang, Preparation and enhanced photoelectrochemical performance of selenite-sensitized zinc oxide core/shell composite structure. J. Mater. Chem. A 3, 4239–4247 (2015)

    Article  CAS  Google Scholar 

  27. L. Yan, W. Zhao, Z. Liu, 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Trans 45, 11346–11352 (2016)

    Article  CAS  Google Scholar 

  28. A. Janotti, C.G.V. Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501–126529 (2009)

    Article  CAS  Google Scholar 

  29. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16, R829–R858 (2004)

    Article  CAS  Google Scholar 

  30. V. Sharma, P. Kumar, J. Shrivastava, A. Solanki, V.R. Satsangi, S. Dass, R. Shrivastav, Vertically aligned nanocrystalline Cu-ZnO thin films for photoelectrochemical splitting of water. J. Mater. Sci. 46, 3792–3801 (2011)

    Article  CAS  Google Scholar 

  31. V. Sharma, P. Kumar, N. Singh, S. Upadhyay, V.R. Satsangi, S. Dass, R. Shrivastav, Photoelectrochemical water splitting with nanocrystalline Zn1−xRuxO thin films. Int. J. Hydrog. Energy 37, 12138–12149 (2012)

    Article  CAS  Google Scholar 

  32. V. Sharma, M. Dixit, V.R. Satsangi, S. Dass, S. Pal, R. Shrivastav, Photoelectrochemical splitting of water with nanocrystalline Zn1−xMnxO thin films: first-Principle DFT computations supporting the systematic experimental endeavor. Int. J. Hydrog. Energy 39, 3637–3648 (2014)

    Article  CAS  Google Scholar 

  33. V. Sharma, M. Prasad, S. Jadkar, S. Pal, Influence of carbon and phosphorus doping on electronic properties of ZnO. J. Mater. Sci. Mater. Electron. 27(12), 12318–12322 (2013)

    Article  CAS  Google Scholar 

  34. Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Y. Zhang, Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 8, 2891–2900 (2015)

    Article  CAS  Google Scholar 

  35. S.M. Lam, J.A. Quek, J.C. Sin, Mechanistic investigation of visible light responsive Ag/ZnO micro/nanoflowers for enhanced photocatalytic performance and antibacterial activity. J. Photochem. Photobiol., A 353, 171–184 (2018)

    Article  CAS  Google Scholar 

  36. R.B. Wei, P.Y. Kuang, H. Cheng, Y.B. Chen, J.Y. Long, M.Y. Zhang, Z.Q. Liu, Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustain. Chem. Eng. 5(5), 4249–4257 (2017)

    Article  CAS  Google Scholar 

  37. T. Wang, R. Lv, P. Zhang, C. Li, J. Gong, Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 7, 77–81 (2015)

    Article  CAS  Google Scholar 

  38. B. Kumari, S. Sharma, V.R. Satsangi, S. Dass, R. Shrivastav, Surface deposition of Ag and Au nano-isles on ZnO thin films yields enhanced photoelectrochemical splitting of water. J. Appl. Electrochem. 45, 299–312 (2015)

    Article  CAS  Google Scholar 

  39. M. Uddin, M. Alam, A. Asiri, M. Rahman, T. Toupance, M. Islam, A novel highly selective electrochemical chlorobenzene sensor based on ternary oxide RuO2/ZnO/TiO2 nanocomposites. RSC Adv. 10, 122–132 (2020)

    Article  CAS  Google Scholar 

  40. Y. Liu, X. Yan, Z. Kang, Y. Li, Y. Shen, Y. Sun, L. Wang, Y. Zhang, Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 6, 29907 (2016)

    Article  CAS  Google Scholar 

  41. T.H. Nguyen, T.A. Do, H.T. Giang, T.G. Ho, Q.N. Pham, M.T. Man, Effect of metal-support couplings on the photocatalytic performance of Au-decorated ZnO nanorods. J. Mater. Sci.: Mater. Electron. 31, 14946–14952 (2020)

    CAS  Google Scholar 

  42. T. Do, T.G. Ho, T.H. Bui, Q.N. Pham, H.T. Giang, T.T. Do, D.V. Nguyen, D.L. Tran, Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices. Beilstein J. Nanotechnol. 9, 771–779 (2018)

    Article  CAS  Google Scholar 

  43. D. Rekha, L.R. Baby, K.H. Gyu, P.H. Borse, Enhanced solar photoelectrochemical conversion efficiency of ZnO: Cu electrodes for water-splitting application. Int. J. Photoenergy (2013). https://doi.org/10.1155/2013/928321

    Article  Google Scholar 

  44. J. Lin, Y.U. Heo, A. Nattestad, Z. Sun, L. Wang, J.H. Kim, S.X. Dou, 3D Hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Sci. Rep. 4, 5769 (2014)

    Article  CAS  Google Scholar 

  45. C. Windisch, G. Exarhos, Vac, Mott-Schottky analysis of thin ZnO films. J. Sci. Technol. 18, 1677–1680 (2000)

    CAS  Google Scholar 

  46. B. Bera, A. Chakraborty, T. Kar, P. Leuaa, M. Neergat, Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N doped carbon and their influence on electrocatalysis of oxygen reduction reaction. Phys. J. Chem. C. 121, 20850–20856 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vidhika Sharma, Mohit Prasad, and Sandesh Jadkar are thankful to Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi, for special financial support. Sandesh Jadkar is also thankful to UGC for financial support under the UPE program. Vidya Doiphode, Ashvini Punde, Pratibha Shinde, Yogesh Hase, and Ashish Waghmare are thankful to the Ministry of New and Renewable Energy, Government of India for financial support under the National Renewable Energy Fellowship (NREF) program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohit Prasad or Sandesh Jadkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saboor, S.A., Sharma, V., Darboe, E.L. et al. Influence of Au plasmons and their synergistic effects with ZnO nanorods for photoelectrochemical water splitting applications. J Mater Sci: Mater Electron 32, 20525–20538 (2021). https://doi.org/10.1007/s10854-021-06564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06564-4

Navigation