Skip to main content
Log in

TiO2 blocking layer incorporated TiO2/In2O3-based photoanode for DSSC application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

On the compact layer of TiO2, a TiO2/In2O3 photoanode was introduced to improve the performance of the TiO2/In2O3 photoanode-based dye-sensitized solar cells (DSSCs). A compact TiO2 (c-TiO2) thin films were synthesized using the chemical bath deposition (CBD) method, and a p-TiO2/In2O3 photoactive layer was deposited using the economical doctor blade method. The inherent porosity observed in the fabricated films indicates a higher propensity for adsorption of additional dye molecules. We use N3 dye to sensitize all the photoanodes. The photovoltaic properties of the deposited TiO2 compact layer incorporated TiO2/In2O3-based photoanode were compared to those of c-TiO2/p-TiO2 and p-TiO2/In2O3 photoanodes. DSSCs based on the TiO2 compact layer incorporated into the TiO2/In2O3-based photoanode exhibit an Jsc of 5.01 mA/cm2, a Voc of 0.59 V, a resistance of 222 Ω, and an FF of 0.42 with an energy conversion efficiency (η) of 1.32% at the optimal condition. It shows improved performance compared to DSSCs based only on p-TiO2/In2O3 photoanodes, which shows an Jsc of 2.5 mA/cm2, Voc of 0.54 V, a resistance of 231.02 Ω, and FF of 0.54 with a value of 0.78%, and DSSCs based on c-TiO2/p-TiO2 photoanodes, which exhibit an Jsc of 1.6 mA/cm2, a Voc of 0.56 V, a resistance of a 275.85 Ω and a FF of 0.56 with a η value of 0.48%. As a result, we conclude that c-TiO2/TiO2/In2O3 photoanode-based DSSCs show superior performance than p-TiO2/In2O3 and c-TiO2/p-TiO2-based DSSCs. Incorporating a TiO2 compact layer has the potential to improve the device’s efficiency by over 0.41% under a specific solar condition. Significant enhancements in power energy conversion efficiency (PCE) were observed, with an increase of 0.84% compared to devices utilizing c-TiO2/p-TiO2 photoanodes and a further increase of 0.54% compared to devices utilizing p-TiO2/In2O3 photoanodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sets generated during the current study and explained in this article, data cannot shear openly.

References

  1. K. Sharma, V. Sharma, S.S. Sharma, Nanoscale Res. Lett. 13(1), 1–46 (2018)

    Article  Google Scholar 

  2. J. Gong, K. Sumathy, Q. Qiao, And Z. Zhou. 68, 234–246 (2017)

    CAS  Google Scholar 

  3. A.F. Husain, W.W. Hasan, S. Shafie, M. Hamidon, S. Pandey, Renew. Sust Energ. Rev. 94, 779–791 (2018). https://doi.org/10.1016/j.rser.2018.06.031

    Article  CAS  Google Scholar 

  4. C.P. Lee, C.T. Li, K.C. Ho, Mater. Today 20, 267–283 (2017). https://doi.org/10.1016/j.mattod.01.012

    Article  CAS  Google Scholar 

  5. G. Kapil, Y. Ogomi, S.S. Pandey, T. Ma, S. Hayase, J. Nanosci. Nanotechnol. 16(4), 3183–3187 (2016)

    Article  CAS  Google Scholar 

  6. B. O’Regan, M. Gratzel, Nature. 353, 737–740 (1991)

    Article  Google Scholar 

  7. T.H. Syed, W. Wei, Inorganics. 10(11), 191 (2022)

    Article  CAS  Google Scholar 

  8. C. Sun, Y. Li, D. Qi, H. Li, P. Song, J. Mater. Sci.: Mater. Electron. 27, 8027–8039 (2016)

    CAS  Google Scholar 

  9. M. Hosseinnezhad, S. Nasiri, M. Fathi, M. Ghahari, K. Gharanjig, Opt. Mater. 124, 111999 (2022)

    Article  CAS  Google Scholar 

  10. Y. Kusumawati, A.S. Hutama, D.V. Wellia, R. Subagyo, Heliyon. 7, 08436 (2021)

    Article  Google Scholar 

  11. H.J. Tian, L.H. Hu, C.N. Zhang et al., J. Mater. Chem. 21, 863–868 (2011)

    Article  CAS  Google Scholar 

  12. S.S. Rakhunde, K.M. Gadave, D.R. Shinde, P.K. Bhujbal, Eng. Sci. 12(2), 117–124 (2011)

    Google Scholar 

  13. S.A. Sayyed, N.I. Beedri, P.K. Bhujbal, S.F. Shaikh, H.M. Pathan, ES Mater. Manuf. 10(2), 45–51 (2020)

    CAS  Google Scholar 

  14. K. Karthick, U. Nithiyanantham, S.R. Ede, S. Kundu, ACS Sustain. Chem. Eng. 4(6), 3174–3188 (2016)

    Article  CAS  Google Scholar 

  15. N.I. Beedri, P.K. Baviskar, A.T. Supekar, S.R. Inamuddin, Jadkar, H.M. Pathan, Int. J. Mod. Phys. B 32(19), 1840046 (2018)

    Article  CAS  Google Scholar 

  16. S.S. Patil, R.M. Mane, K.V. Khot, S.S. Mali, C.K. Hong, P.N. Bhosale, Sol. Energy. 220, 371–383 (2021)

    Article  CAS  Google Scholar 

  17. R. Biswas, S. Chatterjee, Optik. 212, 164142 (2020)

    Article  CAS  Google Scholar 

  18. A.D. Mottram, Y.H. Lin, P. Pattanasattayavong, K. Zhao, A. Amassian, T.D. Anthopoulos, ACS Appl. Mater. Interfaces. 8(7), 4894–4902 (2016)

    Article  CAS  Google Scholar 

  19. A. Das, R.G. Nair, Opt. Mater. 122, 111784 (2021)

    Article  CAS  Google Scholar 

  20. N. Serpone, J. Phys. Chem. B 110(48), 24287–24293 (2006)

    Article  CAS  Google Scholar 

  21. Y. Kim, H.M. Hwang, L. Wang, I. Kim, Y. Yoon, H. Lee, Sci. Rep. 6(1), 1–10 (2016)

    Article  CAS  Google Scholar 

  22. Y. Meidan, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Mater. Today. 18(3), 155–162 (2015)

    Article  Google Scholar 

  23. R. Bart, S. Pathak, U. Steiner, Chem. Soc. Rev. 44, 8326–8349 (2015)

    Article  Google Scholar 

  24. Z. Luo, Junsheng, C. Wan, Y. Jia, Wang, X. Wu, Electrochim. Acta. 215, 506–514 (2016)

    Article  Google Scholar 

  25. A. Apostolopoulou, D. Sygkridou, A. Rapsomanikis, A.N. Kalarakis, E. Stathatos, Sol. Energy Mater. Sol. Cells. 166, 100–107 (2017)

    Article  CAS  Google Scholar 

  26. P. Chen, X. Yin, M. Que, Y. Yang, X. Liu, W. Que, J. Alloys Compd. 735, 938–944 (2018)

    Article  CAS  Google Scholar 

  27. B. Zhang, N.N. Zhang, J. Chen, Y. Hou, S. Yang, J. Guo, X. Yang, J. Zhong, H. Wang, P. Hu, H. Zhao, H. Yang, Sci. Rep. 3, 3109 (2013). https://doi.org/10.1038/srep03109

    Article  Google Scholar 

  28. K. Eguchi, H. Koga, K. Sekizawa, K. Sasaki, J. Ceram. Soc. Jpn. 108, 1067–1071 (2000). https://doi.org/10.2109/jcersj.108.1264_1067

    Article  CAS  Google Scholar 

  29. S. Mahalingam, H. Abdullah, Renew. Sust. Energy Rev. 63, 245–255 (2016). https://doi.org/10.1016/j.rser.2016.05.067

    Article  CAS  Google Scholar 

  30. S.D. Satpute, J.S. Jagtap, P.K. Bhujbal, S.M. Sonar, P.K. Baviskar, H.M. Pathan, ES Energy Environ. 9(5), 89–94 (2020)

    CAS  Google Scholar 

  31. E. Jang, Kang-Il, Hong, J.H. Kim, Korean J. Chem. Eng. 29, 356–361 (2012)

    Article  Google Scholar 

  32. Y. Hua, S. Zhang, H. Zhao, G. Will, P. Liu, Electrochim. Acta. 54, 1319–1324 (2009)

    Article  Google Scholar 

  33. D. Aleksandra, M. Szindler, M. Szindler, E. Jonda, Microelectron. Int. 37, 87–93 (2020)

    Article  Google Scholar 

  34. C.H. Huang, K.S. Chang, C.Y. Hsu, Electrochim. Acta. 170, 256–262 (2015)

    Article  CAS  Google Scholar 

  35. M.H. Abdullah, M. Rusop, J. Alloys Compd. 600, 60–66 (2014)

    Article  CAS  Google Scholar 

  36. J. Huang, T.F. Jie, Y.R. Cheng, Ho, D.P. Huang, Thin Solid Films. 736, 138903 (2021)

    Article  CAS  Google Scholar 

  37. S. Mahalingam, H. Abdullah, S. Shaari, A. Muchtar, I. Asshari, Sci. World J. (2015). https://doi.org/10.1155/2015/403848

    Article  Google Scholar 

  38. M. Chuang, C. Chen, Q. Dai, L. Xu, H. Song, J. Colloid Interface Sci. 440, 162–167 (2015)

    Article  Google Scholar 

  39. R. Sharma, R.S. Mane, S.K. Min, S.H. Han, J. Alloys Compd. 479, 840–843 (2009)

    Article  CAS  Google Scholar 

  40. H. Abdullah, S. Mahalingam, A. Omar, Z. Razali, S. Shaari, I. Asshaari, Adv. Mater. Res. 911, 266–270 (2014)

    Article  CAS  Google Scholar 

  41. H. Kohjiro, Z.G. Zhao, Y. Cui, M. Miyauchi, M. Miyashita, S. Mori, Langmuir. 27, 20, 12730–12736 (2011)

    Article  Google Scholar 

  42. K. Lingxin, Q. Dai, C. Miao, L. Xu, H. Song, J. Colloid Interface Sci. 450, 196–201 (2015)

    Article  Google Scholar 

  43. H. Chen, L. Yang, L. Guo, L. Zhou, D. Li, J. Phys. Chem. C 122(25), 13598–13607 (2018)

    Google Scholar 

  44. Q. Zhang, C.S. Dandeneau, Adv. Mater. Interfaces. 4(22), 1700586 (2017)

    Google Scholar 

  45. L. Li, J. Wu, P. Wang, Energy Environ. Sci. 7(5), 1362–1387 (2014)

    Google Scholar 

  46. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, M. Grätzel, Nat. Mater. 2(6), 402–407 (2003)

    Article  CAS  Google Scholar 

  47. Q. Wang, J.E. Moser, M. Grätzel, J. Phys. Chem. B 109(31), 14945–14953 (2005)

    Article  CAS  Google Scholar 

  48. G.A. Nowsherwan, M.A. Iqbal, S.U. Rehman, A. Zaib, M.I. Sadiq, M.A. Dogar, M. Azhar, S.S. Maidin, S.S. Hussain, K. Morsy, J.R. Choi, Sci. Rep. 13, 10431 (2023)

    Article  CAS  Google Scholar 

  49. N. Kazuteru, N. Vlachopoulos, E. Unger, L. Häggman, A. Hagfeldt, G. Boschloo, J. Electrochem. Soc. 166, B3203–B3208 (2019)

    Article  Google Scholar 

  50. U.Y. Oktiawati, N.M. Mohamed, Z.A. Burhanudin, Int. J. Photoenergy (2016). https://doi.org/10.1155/2016/8507625

    Article  Google Scholar 

  51. G. Rajender, P.K. Giri, J. Alloys Compd. 676, 591–600 (2016)

    Article  CAS  Google Scholar 

  52. D.J. Won, C.H. Wang, H.K. Jang, D.J. Choi, Appl. Phys. A 73, 595–600 (2001)

    Article  CAS  Google Scholar 

  53. J. Xu, X. Wang, G. Wang, J. Hanand, Y. Sun, Electrochem. Solid State. 9, H103–H107 (2006). https://doi.org/10.1149/1.2335943

    Article  CAS  Google Scholar 

  54. M. Thirumoorthi, J. Thomas Joseph Prakash, J. Asian Ceram. Soc. 4, 124–132 (2016). https://doi.org/10.1016/j.jascer.2016.01.001

    Article  Google Scholar 

  55. S.A. More, R.G. Halor, M. Bushra, R. Shaikh, S.D. Bagul, V. Sathe, S.S. Ghosh, Synth. Met. 287, 117081 (2022)

    Article  CAS  Google Scholar 

  56. S.A. More, R.G. Halor, R. Shaikh, G.G. Bisen, H.S. Tarkas, S.R. Tak, B.R. Bade, S.R. Jadkar, J.V. Sali, S.S. Ghosh, RSC Adv. 10, 39995 (2020)

    Article  CAS  Google Scholar 

  57. R.S. Mane, W.J. Lee, H.M. Pathan, S.H. Han, J. Phys. Chem. B 109(51), 24254–24259 (2005)

    Article  CAS  Google Scholar 

  58. P.S. Liu, W.P. Cai, L.X. Wan, M.D. Shi, X.D. Luo, W.P. Jing, Trans. Nonferrous Met. Soc. China. 19, 743–s747 (2009)

    Article  Google Scholar 

  59. A. Kitiyanan, S. Ngamsinlapasathian, S. Pavasupree, S. Yoshikawa, J. Solid State Chem. 178(4), 1044–1048 (2005)

    Article  CAS  Google Scholar 

  60. M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, Nat. Mater. 4(8), 607–611 (2005)

    Article  Google Scholar 

  61. K. Fan, M. Liu, T. Peng, L. Ma, K. Dai, Renew. Energy. 35(2), 555–561 (2010)

    Article  CAS  Google Scholar 

  62. M. Giannouli, Κ Govatsi, G. Syrrokostas, S.N. Yannopoulos, G. Leftheriotis, Materials (2018). https://doi.org/10.3390/ma11030411

    Article  Google Scholar 

  63. K. Balachandran, R. Venckatesh, R. Sivaraj, K.V. Hemalatha, R. Mariappan, Mater. Sci. Semiconduct. Process. 35, 59–65 (2015)

    Article  CAS  Google Scholar 

  64. M.A. Rashid, D. Hayati, K. Kwak, J. Hong, Nanomaterials 10(5), 914 (2020)

    Article  Google Scholar 

  65. A. Mahapatra, P. Kumar, A.K. Behera, A. Sen, B. Pradhan, J. Photochem. Photobiol. a 436, 114385 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SDS and SRJ are thankful to the Department of Science and Technology (DST), Solar Energy Research Development (SERD), Government of India for financial support (GOI-A-849).

SFS extend their sincere appreciation to the Researchers Supporting Project number (RSP2023R370), King Saud University, Riyadh, Saudi Arabia for the financial support.

Funding

Funding was supported by Department of Science and Technology (DST), Solar Energy Research Development (SERD), Government of India. (Grant No: GOI-A-849), King Saud University, Riyadh, Saudi Arabia (Grant No: RSP2023R370)

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [SDS], and [PKB]. The initial draft of the manuscript was written by [SDS]. Conceptualization, formal analysis, and writing—review and editing was done by [SAM]. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Sagar A. More.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpute, S.D., Bhujbal, P.K., Shaikh, S.F. et al. TiO2 blocking layer incorporated TiO2/In2O3-based photoanode for DSSC application. J Mater Sci: Mater Electron 34, 2311 (2023). https://doi.org/10.1007/s10854-023-11702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11702-1

Navigation