Skip to main content
Log in

Employing SiO2/TiO2/ZrO2 blends for boosting the power conversion efficiency of polycrystalline Si solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Obtaining maximum efficiency is one of the key elements of renewable energy sources in the present era. In this context, the research focuses on enhancing the power conversion efficiency of silicon solar cells through anti-reflective coating. Better light transmittance in silicon solar cells with anti-reflective thin film coatings results in higher power conversion efficiency. The RF sputtering technique was employed to deposit the thin film of ARCs on polycrystalline Si solar cells. Blends of metal oxides such as SiO2, TiO2, and ZrO2 have been employed in different combinations to achieve a higher PCE. Using the RF sputtering technique, the coating was uniform. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were both used to examine the structural and morphological characteristics of ARC-coated and uncoated silicon solar cells, respectively. By employing the four-point probe approach, the electrical resistivity was measured in the dark and at room temperature. Solar cell samples were examined for their optical properties through UV–visible spectroscopy. By comparing the efficiency of the ARC-coated and uncoated solar cell samples, it is evident that solar cells coated with the SiO2/TiO2/ZrO2 mechanical blend show an improved PCE of 19.8% under open atmospheric conditions and 21.93% under controlled atmospheric conditions compared to the uncoated, SiO2, TiO2, and ZrO2-coated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. G.C. Righini, F. Enrichi, Sol. Cell. Light Manag. (2020). https://doi.org/10.1016/B978-0-08-102762-2.00001-X

    Article  Google Scholar 

  2. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovoltaics Res. Appl. 29, 1 (2021)

    Article  Google Scholar 

  3. A. Uzum, M. Kuriyama, H. Kanda, Y. Kimura, K. Tanimoto, H. Fukui, T. Izumi, T. Harada, S. Ito, Int. J. Photoenergy (2017). https://doi.org/10.1155/2017/3436271

    Article  Google Scholar 

  4. D. Zambrano, R. Espinoza-González, R. Villarroel, A. Rosenkranz, N. Carvajal, M.I. Pintor-Monroy, A.G. Montaño-Figueroa, M.J. Arellano-Jiménez, Sol. Energy Mater. Sol. Cell. 243, 111784 (2022)

    Article  Google Scholar 

  5. H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Energy Environ. Sci. 4, 10 (2011)

    Article  Google Scholar 

  6. A. U. Al Montazer Mandong, (2021) Res. Eng. Struct. Mater, 7: 539-550

  7. M.H. Sayed, E.V. Robert, P.J. Dale, L. Gütay, Thin Solid Films 669, 436–439 (2019)

    Article  CAS  Google Scholar 

  8. A. Tombak, T. Kilicoglu, Y.S. Ocak, Renew. Energy 146, 1465–1470 (2020)

    Article  CAS  Google Scholar 

  9. D. Chen, Sol. Energy Mater. Sol. Cells. 68, 3–4 (2001)

    Article  Google Scholar 

  10. L. Ye, Y. Zhang, X. Zhang, T. Hu, R. Ji, B. Ding, B. Jiang, Sol. Energy Mater. Sol. Cells 111, 160–164 (2013)

    Article  CAS  Google Scholar 

  11. C. Besleaga, L. Ion, S. Antohe, Romanian Rep. Phys. 66, 4 (2014)

    Google Scholar 

  12. D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L. Vassilev, Mater. Sci. Engineering: B 52, 1 (1998)

    Article  Google Scholar 

  13. Y. Bakha, R. Serhane, A. Smatti, Algerian J. Res. Technol. (AJRT). 4, 1 (2020)

    Google Scholar 

  14. S.M. George, Chem. Rev. 110, 1 (2010)

    Article  Google Scholar 

  15. J. Szlufcik, J. Majewski, A. Buczkowski, J. Radojewski, L. Jȩdral, E.B. Radojewska, Solar Energy Materials. 18, 5 (1989)

    Article  Google Scholar 

  16. L. Chen, Y. Zhou, W. Tu, Z. Li, C. Bao, H. Dai, T. Yu, J. Liu, Z. Zou, Nanoscale. 5, 8 (2013)

    Google Scholar 

  17. S. Rahmane, M.S. Aida, M.A. Djouadi, N. Barreau, Superlattices Microstruct. 79, 148–155 (2015)

    Article  CAS  Google Scholar 

  18. P. Misra, V. Ganeshan, N. Agrawal, J. Alloys Compd. 725, 60–68 (2017)

    Article  CAS  Google Scholar 

  19. N.E. Yeo, W.K. Cho, D.-I. Kim, M.Y. Jeong, Appl. Surf. Sci. 458, 503–511 (2018)

    Article  CAS  Google Scholar 

  20. C. Agustín-Sáenz, M. Machado, J. Nohava, N. Yurrita, A. Sanz, M. Brizuela, O. Zubillaga, A. Tercjak, Sol. Energy Mater. Sol. Cells 216, 110694 (2020)

    Article  Google Scholar 

  21. N. Barua, T. Ragini, R. Subasri (2017) J. Non-cryst. Solids, 469

  22. Z. Guo, Y. Liu, M. Tang, J. Wang, X. Su, Sol. Energy Mater. Sol. Cells 170, 143–148 (2017)

    Article  CAS  Google Scholar 

  23. H.K. Raut, S.S. Dinachali, K.K. Ansah-Antwi, V.A. Ganesh, S. Ramakrishna, Nanotechnology. 24, 50 (2013)

    Article  Google Scholar 

  24. L. Yao, Z. Qu, Z. Pang, J. Li, S. Tang, J. He, L. Feng, Small. 14, 34 (2018)

    Google Scholar 

  25. M. Mazur, D. Wojcieszak, D. Kaczmarek, J. Domaradzki, S. Song, D. Gibson, F. Placido, P. Mazur, M. Kalisz, A. Poniedzialek, Appl. Surf. Sci. 380, 165–171 (2016)

    Article  CAS  Google Scholar 

  26. J. Li, Y. Lu, P. Lan, X. Zhang, W. Xu, R. Tan, W. Song, K.-L. Choy, Sol. Energy 89, 134–142 (2013)

    Article  Google Scholar 

  27. B. Richards, S. Rowlands, A. Ueranatasun, J. Cotter, C. Honsberg, Sol. Energy. 76, 1–3 (2004)

    Article  Google Scholar 

  28. W.J. Shin, L. Wang, M. Tao, Low-cost spray deposited ZrO2 for passivation and antireflection on p-type Si. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016. IEEE

  29. W.J. Shin, W.-H. Huang, M. Tao, Mater. Chem. Phys. 230, 37–43 (2019)

    Article  CAS  Google Scholar 

  30. M.A. Zahid, M.Q. Khokhar, Z. Cui, H. Park, J. Yi, Res. Phys. 28, 104640 (2021)

    Google Scholar 

  31. K. Liao, J. Chen, L. Xia, S. Zhong, X. Luo, Opt. Mater. 109, 110318 (2020)

    Article  CAS  Google Scholar 

  32. R. Swathi, J. Shanthi, S. Aishwarya, K. Anoop, Int. J. Energy Res. 46, 11 (2022)

    Article  Google Scholar 

  33. S. Jain, A. Paliwal, V. Gupta, M. Tomar, Plasmonics 15, 1091–1101 (2020)

    Article  CAS  Google Scholar 

  34. Y. Xu, J. Zhang, L. Ai, X. Lou, S. Lin, Y. Lu, B. Fan, J. Jin, W. Song, Sol. Energy 201, 149–156 (2020)

    Article  CAS  Google Scholar 

  35. X. Xiao, H. Zhu, Z. Liu, J. Tu (2022) Materialwiss. Werkstofftech. 53, 1 

  36. K. Ali, S.A. Khan, M.M. Jafri, Int. J. Electrochem. Sci. 9, 12 (2014)

    Article  Google Scholar 

  37. V. Gobinath, R. Rajasekar, S. Santhosh, C. Moganapriya, A.M. Sri, S. Jaganathan, Silicon 14(15), 9773–9788 (2022)

    Article  CAS  Google Scholar 

  38. P. Khajuria, R. Mahajan, R. Prakash, J. Mater. Sci.: Mater. Electron. 32, 23 (2021)

    Google Scholar 

  39. Q.M.A.-B. Mr, T.O.S. Mr, Phys. B: Condens. Matter 293, 126816 (2020)

    Google Scholar 

  40. P. Prepelita, M. Filipescu, I. Stavarache, F. Garoi, D. Craciun, Appl. Surf. Sci. 424, 368–373 (2017)

    Article  CAS  Google Scholar 

  41. W. Vallejo, E. Romero, G. Gordillo, J. Braz. Chem. Soc. 22, 2286–2291 (2011)

    CAS  Google Scholar 

  42. J. Yoo, J. Lee, S. Kim, K. Yoon, I.J. Park, S. Dhungel, B. Karunagaran, D. Mangalaraj, J. Yi, Thin Solid Films 480, 213–217 (2005)

    Article  Google Scholar 

  43. G. Velu Kaliyannan, S.V. Palanisamy, R. Rathanasamy, M. Palanisamy, S.K. Palaniappan, M. Chinnasamy, J. Mater. Sci.: Mater. Electron. 31, 3 (2020)

    Google Scholar 

  44. S. Xue, X. Zu, L. Shao, Z. Yuan, W. Zheng, X. Jiang, H. Deng, J. Alloys Compd. 458, 1–2 (2008)

    Article  Google Scholar 

  45. J. Chang, M.-H. Hon, Thin Solid Films. 386, 1 (2001)

    Article  Google Scholar 

  46. S. Jeong, J. Lee, S. Lee, J. Boo, Thin Solid Films. 435, 1–2 (2003)

    Article  Google Scholar 

  47. S. Ghosh, S. Das, A. Sil, P.K. Biswas, J. Solgel Sci. Technol. 64, 3 (2012)

    Article  Google Scholar 

  48. P. Shanmugam, R. Rathanasamy, G.V. Kaliyannan, S. Sivaraj, M. Chinnasamy, M.S. Anbupalani, Mater. Sci. 28, 2 (2022)

    Google Scholar 

  49. G. Velu Kaliyannan, S.V. Palanisamy, R. Rathanasamy, M. Palanisamy, N. Nagarajan, S. Sivaraj, M.S. Anbupalani, J. Electron. Mater. 49, 10 (2020)

    Article  Google Scholar 

  50. G. Velu Kaliyannan, S.V. Palanisamy, R. Rathanasamy, M. Palanisamy, N. Nagarajan, S. Sivaraj, M.S. Anbupalani, J. Electron. Mater. 49, 5937–5946 (2020)

    Article  CAS  Google Scholar 

  51. A. Kaushal, D. Kaur, J. Alloys Compd. 509, 2 (2011)

    Article  Google Scholar 

  52. T.S. Bhat, A.S. Kalekar, D.S. Dalavi, C.C. Revadekar, A.C. Khot, T.D. Dongale, P.S. Patil, J. Mater. Sci.: Mater. Electron. 30, 19 (2019)

    Google Scholar 

  53. Fill Factor of Solar Cells. 03.10.2023. Available from: https://mdanderson.libanswers.com/faq/26219

  54. G. Velu Kaliyannan, S.V. Palanisamy, M. Palanisamy, M. Chinnasamy, S. Somasundaram, N. Nagarajan, R. Rathanasamy, Appl. Nanosci. 9, 5937–5946 (2019)

    Article  Google Scholar 

  55. E. Radziemska, Renew. Energy. 28, 1 (2003)

    Article  CAS  Google Scholar 

  56. S. Dubey, J.N. Sarvaiya, B. Seshadri, Energy procedia 33, 311–321 (2013)

    Article  Google Scholar 

  57. M. Chinnasamy, R. Rathanasamy, S. Sivaraj, G. Velu Kaliyannan, M.S. Anbupalani, S.K. Jaganathan, J. Electron. Mater. 51, 6 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

MSA: Conceptualization, experimental design, carrying out measurements, Writing-original draft; CDV: Supervision, Validation; RR: Conceptualization, Methodology, Validation, Writing-Reviewing, and Editing; GVK: Writing-Reviewing and Editing.

Corresponding author

Correspondence to Manju Sri Anbupalani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to this research work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbupalani, M.S., Venkatachalam, C.D., Rathanasamy, R. et al. Employing SiO2/TiO2/ZrO2 blends for boosting the power conversion efficiency of polycrystalline Si solar cells. J Mater Sci: Mater Electron 34, 2184 (2023). https://doi.org/10.1007/s10854-023-11589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11589-y

Navigation