Skip to main content
Log in

Plasmon-Assisted Crystalline Silicon Solar Cell with TiO2 as Anti-Reflective Coating

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The present study focuses on the employment of TiO2 (titanium dioxide) film as an anti-reflective coating (ARC) on thin crystalline silicon (Si)-based solar cells along with the incorporation of plasmonic silver nanoparticles (Ag NPs) on its front surface having ITO (Indium Tin Oxide) as top metal contact. The response of solar cell has been studied in context of the external quantum efficiency (EQE) and the photovoltaic current-voltage characteristics. The EQE is enhanced appreciably in the entire wavelength range of 300 to 1100 nm (from 13.26% for bare Si solar cell to 61.93% for solar cell having both TiO2 and Ag nanoparticles at a wavelength of 600 nm), on incorporating anti-reflective TiO2 coating and Ag nanoparticles on the thin Si solar cell. A significant increment in the power conversion efficiency from 9.53% (bare cell) to 16.04% (cell with anti-reflective coating of TiO2 thin film and silver nanoparticles) has also been observed. The presence of TiO2 film reduces the reflection of incident light from the top Si surface and hence appreciably improves solar cell efficiency. Besides this, Ag NPs help in trapping more light due to the plasmonic effect and hence result in further improvement in solar cell efficiency. The achieved results are encouraging for the commercial development of thin Si-based solar cells with TiO2 ARC and Ag NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Takahashi K, Konagai M (1986) Amorphous silicon solar cells, New York. Wiley-Interscience:237 Transl., 1986

  2. Shah A (1999) Photovoltaic technology: the case for thin-film solar cells. Science (80-) 285(5428):692–698

    CAS  Google Scholar 

  3. Bruton T (2002) General trends about photovoltaics based on crystalline silicon. Sol Energy Mater Sol Cells 72(1–4):3–10

    CAS  Google Scholar 

  4. Chel A, Kaushik G (2017) Renewable energy technologies for sustainable development of energy efficient building. Alexandria Eng. J

  5. Ho WJ, Lee YY, Su SY (2014) External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles. Nanoscale Res Lett 9(1):1–8

    Google Scholar 

  6. Choudhury BD, Abedin A, Dev A, Sanatinia R, Anand S (2013) Silicon micro-structure and ZnO nanowire hierarchical assortments for light management. Opt Mater Express 3(8):1039

    Google Scholar 

  7. Zhang Y et al (2013) Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Opt Mater Express 3(4):489

    CAS  Google Scholar 

  8. Spinelli P et al (2012) Plasmonic light trapping in thin-film Si solar cells. J Opt 14(2):024002

    Google Scholar 

  9. Keshavarz Hedayati M, Elbahri M, Keshavarz Hedayati M, Elbahri M (2016) Antireflective coatings: conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Materials (Basel) 9(6):497

    Google Scholar 

  10. Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93(12):121904

    Google Scholar 

  11. Rao MC, Ravindranadh K, Shekhawat MS (2016) Structural and electrical properties of TiO2 thin films, in AIP Conference Proceedings. 1728(1):020077

  12. BS Richards, JE Cotter, CB Honsberg, and SR Wenham (2000) Novel uses of TiO/sub 2/ in crystalline silicon solar cells. Conf Rec Twenty-Eighth IEEE Photovolt Spec Conf - 2000 (Cat. No.00CH37036), no. September, pp. 375–378

  13. Clark R (1968) The chemistry of titanium and vanadium. An introduction to the chemistry of the early transition elements. Elsevier Pub. Co., Amsterdam

    Google Scholar 

  14. BS Richards (2002) Novel uses of titanium dioxide for silicon solar cells, PhD Thesis, no.

  15. Bendavid A, Martin PJ, Takikawa H (2000) Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin Solid Films 360(1–2):241–249

    CAS  Google Scholar 

  16. B. S. Richards, J. E. Cotter, C. B. Honsberg, and S. R. Wenham, Novel uses of TiO2 in crystalline silicon solar cells, in Conference Record of the IEEE Photovoltaic Specialists Conference, 2000, vol. 2000-January, pp. 375–378

  17. Beck FJ, Mokkapati S, Catchpole KR (2010) Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles. Prog Photovolt Res Appl 18(7):500–504

    CAS  Google Scholar 

  18. Deka N, Islam M, Sarswat PK, Kumar G (2018) Enhancing solar cell efficiency with plasmonic behavior of double metal nanoparticle system. Vacuum 152:285–290

    CAS  Google Scholar 

  19. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89(9):093103

    Google Scholar 

  20. Fei Guo C, Sun T, Cao F, Liu Q, Ren Z (2014) Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci Appl 42

  21. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    CAS  Google Scholar 

  22. Adamovic N, Schmid U (2011) Potential of plasmonics in photovoltaic solar cells. e i Elektrotechnik und Informationstechnik 128(10):342–347

    Google Scholar 

  23. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9):093105

    Google Scholar 

  24. Chen X, Jia B, Saha JK, Cai B, Stokes N, Qiao Q, Wang Y, Shi Z, Gu M (2012) Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett 12(5):2187–2192

    CAS  PubMed  Google Scholar 

  25. Wu J-L, Chen FC, Hsiao YS, Chien FC, Chen P, Kuo CH, Huang MH, Hsu CS (2011) Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5(2):959–967

    CAS  PubMed  Google Scholar 

  26. Gupta BD, Verma RK (2009) Surface plasmon resonance-based Fiber optic sensors: principle, probe designs, and some applications. J Sensors 2009:1–12

    Google Scholar 

  27. Malik O, De la Hidalga-W FJ, Zúñiga-I C, Ruiz-T G (2008) Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: results and perspectives. J Non-Cryst Solids 354(19–25):2472–2477

    CAS  Google Scholar 

  28. Granqvist CG, Hultåker A (2002) Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411(1):1–5

    CAS  Google Scholar 

  29. De Vries JWC (1988) Temperature and thickness dependence of the resistivity of thin polycrystalline aluminium, cobalt, nickel, palladium, silver and gold films. Thin Solid Films 167(1–2):25–32

    Google Scholar 

  30. Ho W, Liao J, Hou Z, Yeh C, Sue R (2015) High efficiency textured silicon solar cells based on an ITO/TiO 2/Si MOS structure and biasing effects. 117:1–6

  31. Park Y, Choong V, Gao Y, Hsieh BR, Tang CW (1996) Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl Phys Lett 68(19):2699–2701

    CAS  Google Scholar 

  32. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48(11):4729–4733

    CAS  Google Scholar 

  33. Allen FG, Gobeli GW (1962) Work function, photoelectric threshold, and surface states of atomically clean silicon. Phys Rev 127(1):150–158

    CAS  Google Scholar 

  34. Pethuraja GG et al (2012) Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces. Adv Mater Phys Chem 02(02):59–62

    CAS  Google Scholar 

  35. Chhajed S, Schubert MF, Kim JK, Schubert EF (2008) Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics. Cit Appl Phys Lett 93:251108

    Google Scholar 

  36. Rajan A, Kaur G, Paliwal A, Yadav HK, Gupta V, Tomar M (2014) Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors. J Phys D Appl Phys 47(42):425102

    Google Scholar 

  37. Hao E, Schatz GC (2004) 357 cite as. J Chem Phys 120:357

    CAS  PubMed  Google Scholar 

  38. Pu Y, Chen J, Wang W (2019) Basic optical scattering parameter of the brain and prostate tissues in the spectral range of 400–2400 nm. Neurophotonics Biomed Spectrosc:229–252

  39. Bilankohi SM (2015) Optical scattering and absorption characteristics of silver and silica/silver core/shell nanoparticles. Orient J Chem 31(4):2259–2263

    CAS  Google Scholar 

  40. Verma A, Mehata MS (2016) Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J Radiat Res Appl Sci 9(1):109–115

    CAS  Google Scholar 

  41. Xu M et al (2011) Photocatalytic activity of bulk TiO 2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys Rev Lett 106(13):138302

    PubMed  Google Scholar 

  42. Christopher JG, Saswati B, Ezilrani P, Christopher JG, Saswati B, Ezilrani P (2015) Optimization of parameters for biosynthesis of silver nanoparticles using leaf extract of Aegle marmelos. Brazilian Arch Biol Technol 58(5):702–710

    CAS  Google Scholar 

  43. Suman TY, Radhika Rajasree SR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B: Biointerfaces 106:74–78

    CAS  PubMed  Google Scholar 

  44. Govarthanan M et al (2014) Biosynthesis and characterization of silver nanoparticles using panchakavya, an Indian traditional farming formulating agent. Int J Nanomedicine 9(1):1593

    PubMed  PubMed Central  Google Scholar 

  45. Rashid MU, Bhuiyan MKH, Quayum ME (2013) Synthesis of silver nano particles (Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. Dhaka Univ J Pharm Sci 12(1):29–33

    Google Scholar 

  46. Y. Kang et al., Titanium dioxide hole-blocking layer in ultra-thin-film crystalline silicon solar cells, 2017

    Google Scholar 

  47. M. Shukla, N. Brahme, R. S. Kher, and S. K. Khokhar, Elementary approach to calculate quantum efficiency of polymer light emitting diodes, 2011

    Google Scholar 

  48. Buonassisi and Tonio, Toward a 1D device model part 1: device fundamentals

  49. Y. Y. Lee, W. J. Ho, J. J. Liu, and C. H. Lin, Light-trapping performance of silicon thin-film plasmonics solar cells based on indium nanoparticles and various TiO2 space layer thicknesses, Jpn J Appl Phys, vol. 53, no. 6 SPEC. ISSUE, pp. 3–8, 2014

  50. Chen JY, Sun KW (2010) Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer. Sol Energy Mater Sol Cells 94(3):629–633

    CAS  Google Scholar 

  51. Zhang D et al (2013) Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells. Sol Energy Mater Sol Cells 117:132–138

    CAS  Google Scholar 

  52. Ho W-J, Fen S-K, Liu J-J (2018) Plasmonic effects of silver nanoparticles with various dimensions embedded and non-embedded in silicon dioxide antireflective coating on silicon solar cells. Appl Phys A Mater Sci Process 124:29

    Google Scholar 

  53. Shi E, Li H, Yang L, Zhang L, Li Z, Li P, Shang Y, Wu S, Li X, Wei J, Wang K, Zhu H, Wu D, Fang Y, Cao A (2013) Colloidal antireflection coating improves graphene–silicon solar cells. Nano Lett 13(4):1776–1781

    CAS  PubMed  Google Scholar 

  54. Jung J, Jannat A, Akhtar MS, Yang O-B (2018) Sol–gel deposited double layer TiO 2 and Al 2 O 3 anti-reflection coating for silicon solar cell. J Nanosci Nanotechnol 18(2):1274–1278

    CAS  PubMed  Google Scholar 

  55. Oh G, Kim EK (2019) Antireflection coatings with graded refractive index of indium tin oxide for Si-based solar cells. J Korean Phys Soc 74(2):127–131

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would also like to acknowledge Dr. A.K. Saxena (AGM, Bharat Heavy Electricals Ltd.—Amorphous Silicon Solar Cell Power Plant) and Ms. Shivangi Jha (DM, Bharat Heavy Electricals Ltd.—Amorphous Silicon Solar Cell Power Plant) for their technical support.

Funding

The Department of Science and Technology, India, and University of Delhi provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinay Gupta or Monika Tomar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Paliwal, A., Gupta, V. et al. Plasmon-Assisted Crystalline Silicon Solar Cell with TiO2 as Anti-Reflective Coating. Plasmonics 15, 1091–1101 (2020). https://doi.org/10.1007/s11468-020-01127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01127-5

Keywords

Navigation