Skip to main content
Log in

Insights on structural and magnetic properties of BaZr0.15Ti0.85O3- NiFe2O4 lead-free multiferroics by the solid-state reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A solid solution of Barium Zirconium titanate [NiFe2O4; NF] and [BaZr0.15Ti0.85O3; BZT] and nickel ferrite with different mol% fractions of x(NiFe2O4)-(1−x)BaZr0.15Ti0.85O3 (where x = 0.03, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4) (abbreviated as NB-0.03, NB-0.05, NB-0.07, NB-0.1, NB-0.2, NB-0.3, NB-0.4) was synthesized via a cost effective solid-state technique. Phase identification and basic structural symmetry of the samples were determined by analyzing powder X-ray diffraction data. It reveals that the samples have a tetragonal structure along with the cubic spinel ferrite phase. The diffraction peaks shifted slightly to the side of greater angle side and average crystallite size was computed by Scherer’s formula in range of 26–29 nm. Since ferrite’s compositional fluctuation is less than 1% for the compositions (x = 0.1,0.2,0.3,0.4), the overall crystal phase is dominated by perovskite phase which was further confirmed by room temperature Raman spectra. At room temperature (300 K), the magnetic hysteresis loop measurements also showed a significant improvement in the magnetization of NB-0.40 composite has the maximum observed saturation magnetization = 29.25emu/g and 20.34emu/g at 5 and 300 K, respectively. The calculated magnetic parameters such as saturation magnetization (Ms), remanence (Mr) and coercivity (Hc), showed increased values for some NiFe2O4 doped BZT samples. Thus, it has been assumed that this sample could be utilized to enhance the magnetoelectric coupling for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

On request, you can view the data that have available to support the results presented in the paper.

References

  1. S. Sharma, H. Sharma, S. Thakur, J. Shah, R. Kotnala et al., J. Magn. Magn. Mater. 538, 168243 (2021)

    Article  CAS  Google Scholar 

  2. G.T. Hwang, M. Byun, C.K. Jeong,  Adv. Healthcare Mater. 4, 646 (2015)

    Article  CAS  Google Scholar 

  3. P. Kumari, M. Shandilya, M. Lal, R. Rai (2017) Smart materials for smart living, 95. 

  4. G. Channagoudra, J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.167181

    Article  Google Scholar 

  5. M. Fiebig, T. Lottermoser, D. Meier et al., Nat. Rev. Mater. 1, 1 (2016)

    Article  Google Scholar 

  6. P. Kumari, M. Shandilya, M. Lal, R. Rai (2017) Smart materials for smart living, 95.

  7. M.J. Miah (2016) Study of multiferroic properties of rare earth substituted xBa0.95Sr0. 5TiO3-(1-x) BiFe0.9Re0.1O3 perovskite ceramics 

  8. U.K. Chanda(2013) Effect of processing, dopant and microwave sintering on the dielectric properties of BiFeO3 ceramic 

  9. P. Kumari, R. Rai, S. Sharma, M. Shandilya, A. Tiwari, Adv. Mater. Lett. 6, 453 (2015)

    Article  CAS  Google Scholar 

  10. T. Zheng, Adv. Electron. Mater. 6, 2000079 (2020)

    Article  CAS  Google Scholar 

  11. C. Liu, G. Zhao, T. Hu, L. Bellaiche, Phys. Rev. B 103, L081403 (2021)

    Article  CAS  Google Scholar 

  12. S.M. Mane, A.R. Nimbalkar, H. Kim et al., J. Alloys Compd. 849, 156599 (2020)

    Article  CAS  Google Scholar 

  13. B. Xiao, Y. Tang, G. Ma, N. Ma et al., Appl. Phys. A 119, 1291 (2015)

    Article  CAS  Google Scholar 

  14. S. Umashankar, T. Parida, K.R. Kumar, A.M. Strydom, G. Markandeyulu, J. Magn. Magn. Mater. 439, 213 (2017)

    Article  CAS  Google Scholar 

  15. S. Sharma, K. Shamim, A. Ranjan, R. Rai, P. Kumari et al., Ceram. Int. 41, 7713 (2015)

    Article  CAS  Google Scholar 

  16. A. Singh, K. Shamim, S. Sharma, R. Rai, J. Mater. Sci.: Mater. Electron. 29, 18221 (2018)

    CAS  Google Scholar 

  17. P. Kumari, P. Kumar, Int. Ferroelectr. 167, 24 (2015)

    Article  CAS  Google Scholar 

  18. U. Acevedo, R. Breitwieser, R.L. Noda, R. Valenzuela, ECerS2017 113, 293 (2017)

    Google Scholar 

  19. S. Joshi, Ceram. Int. 42, 18154 (2016)

    Article  CAS  Google Scholar 

  20. K.C. Verma, V.P. Singh, M. Ram, J. Shah et al., J. Magn. Magn. Mater. 323, 3271 (2011)

    Article  CAS  Google Scholar 

  21. S.D. Bakshi, D. Sinha, Mater. Charact. 142, 144 (2018)

    Article  Google Scholar 

  22. S. Kumari, R. Rai, P. Kumar, P. Kumari et al., Ferroelectr. Lett. Sect. 47, 61 (2020)

    Article  CAS  Google Scholar 

  23. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi et al., Solid State Sci. 14, 488 (2012)

    Article  Google Scholar 

  24. S. Kumari, S. Thakur, D. Nanda et al., J. Mater. Res. Technol. 17, 2175 (2022)

    Article  CAS  Google Scholar 

  25. S. Srivastava, S. Ravi, J. Magn. Magn. Mater. 321, 4072 (2009)

    Article  CAS  Google Scholar 

  26. S. Srivastava, M. Kar, J. Magn. Magn. Mater. 320, e107 (2008)

    Article  CAS  Google Scholar 

  27. B. Samantaray, S. Srivastava, S. Ravi, J. Appl. Phys. (2012). https://doi.org/10.1063/1.3675532

    Article  Google Scholar 

  28. P. Zhang, F. Zuo, F. Urban, I.I.I.A. Khabari, P. Griffiths, A. Hosseini-Tehrani, J. Magn. Magn. Mater. 225, 337 (2001)

    Article  CAS  Google Scholar 

  29. B. Sarkar, B. Dalal, V.D. Ashok, K. Chakrabarti, A. De Mitra, J. Appl. Phys. 115, 123908 (2014)

    Article  Google Scholar 

  30. R. Grigalaitis, M.V. Petrović et al., Ceram. Int. 40, 6165 (2014)

    Article  CAS  Google Scholar 

  31. O. Hemeda, A. Tawfik, M. Amer, B. Kamal, D.E. Refaay, J. Magn. Magn. Mater. 324, 4118 (2012)

    Article  CAS  Google Scholar 

  32. D.S. Lam, N.N. Tung, D.D. Dung, B.X. Khuyen, V.D. Lam, Mater. Res. Exp. 9, 075004 (2022)

    Article  Google Scholar 

  33. S. Srivastava, B. Samantaray, T. Bora, J. Magn. Magn. Mater. 474, 605 (2019)

    Article  CAS  Google Scholar 

  34. A.F. Syeda, J Superconduct.  Novel Magn. 31, 3545 (2018)

    Article  CAS  Google Scholar 

  35. MM Bordelon Magnetic Frustration and Quantum Disorder in, Lanthanide-Based ALnX 2 Materials (University of California, Santa Barbara, 2021)

    Google Scholar 

  36. S. Srivastava, S. Ravi, J. Supercond. Novel Magn. 32, 3995 (2019)

    Article  CAS  Google Scholar 

  37. R. Devan, S. Deshpande et al., J. Phys. D: Appl. Phys. 40, 1864 (2007)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by all of the authors. The final manuscript was read and approved by all writers.

Corresponding author

Correspondence to Poonam Kumari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhiber, D., Kumari, P., Bala, S. et al. Insights on structural and magnetic properties of BaZr0.15Ti0.85O3- NiFe2O4 lead-free multiferroics by the solid-state reaction method. J Mater Sci: Mater Electron 34, 2193 (2023). https://doi.org/10.1007/s10854-023-11577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11577-2

Navigation