Skip to main content

Advertisement

Log in

Boron network ion modulation and composite alumina densification sintering study of MABS glass for LTCC

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigated the effect of B2O3 content in borosilicate glass on the glass properties and the effect of particle-size gradation on the low-temperature co-fired ceramic composites of MABS (MO–Al2O3–B2O3–SiO2) (M = Ca, Mg) glass composite with alumina after optimization of boron content. We prepared a series of MO–Al2O3–B2O3–SiO2 glasses with different B2O3 contents and MABS glass/Al2O3 composites with different particle-size gradation pairings. The results showed that the appropriate amount of B2O3 content not only enhanced the glass network structure but also inhibited the precipitation of harmful crystalline phases. The optimized particle-size gradation promoted the sintering densification and improved the green tape stacking density, dielectric, and mechanical properties. The composites prepared by sintering the MABS glass with a B2O3 content of 9.5 wt% and a particle size of 3.0 μm with 7.71 μm Al2O3 at 830 °C exhibited good performance with a green tape density of 2.01 g/cm3, a sintered density of 3.12 g/cm3, a z-axis shrinkage of 17.10%, a dielectric constant of 8.26, a dielectric loss of 0.6 \(\times\)10–3 (at 7 GHz), coefficient of thermal expansion 6.75 ppm/°C, and flexural strength 299 MPa, demonstrating broad application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. S. Arcaro, T.B. Wermuth, R.Y.S. Zampiva et al., J. Eur. Ceram. Soc. 39, 491 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.09.033

    Article  CAS  Google Scholar 

  2. C.S. Chen, C.C. Chou, W.J. Shih, K.S. Liu, C.S. Chen, I.N. Lin, Mater. Chem. Phys. 79, 129 (2003). https://doi.org/10.1016/S0254-0584(02)00281-X

    Article  CAS  Google Scholar 

  3. R.R. Tummala, J. Am. Ceram. Soc. 74, 895 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb04320.x

    Article  CAS  Google Scholar 

  4. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008). https://doi.org/10.1179/174328008x277524

    Article  CAS  Google Scholar 

  5. X.Y. Feng, Y.Y. Lv, L. Zhang et al., Ceram. Int. 46, 16895 (2020). https://doi.org/10.1016/j.ceramint.2020.03.268

    Article  CAS  Google Scholar 

  6. L.C. Ren, X.F. Luo, H.Q. Zhou, J. Am. Ceram. Soc. 101, 3874 (2018). https://doi.org/10.1111/jace.15694

    Article  CAS  Google Scholar 

  7. S. Jang, S. Kang, J. Nanosci. Nanotechnol. 13, 5883 (2013). https://doi.org/10.1166/jnn.2013.7053

    Article  CAS  Google Scholar 

  8. F.L. Wang, X.Y. Chen, W.J. Zhang, H.J. Mao, J. Mater. Sci. Mater. 29, 9038 (2018). https://doi.org/10.1007/s10854-018-8929-z

    Article  CAS  Google Scholar 

  9. O. Kaygili, J. Therm. Anal. Calorim. 117, 223 (2014). https://doi.org/10.1007/s10973-014-3655-0

    Article  CAS  Google Scholar 

  10. W.H. Zheng, H. Cao, J.B. Zhong, S.Y. Qian, Z.G. Peng, C.H. Shen, J. Non Cryst. Solids 409, 27 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.11.002

    Article  CAS  Google Scholar 

  11. S.X. Zhou, Y. Zhu, H.D. Du, B.H. Li, F.Y. Kang, New Carbon Mater. 27, 241 (2012). https://doi.org/10.1016/S1872-5805(12)60015-8

    Article  CAS  Google Scholar 

  12. H.K. Zhu, M. Liu, H.Q. Zhou, L.Q. Li, A. Lv, Mater. Res. Bull. 42, 1137 (2007). https://doi.org/10.1016/j.materresbull.2006.09.005

    Article  CAS  Google Scholar 

  13. X.F. Luo, L.C. Ren, W.T. Xie et al., J. Mater. Sci. Mater. 27, 5446 (2016). https://doi.org/10.1007/s10854-016-4448-y

    Article  CAS  Google Scholar 

  14. M. Liu, X.Y. Xu, H.Q. Zhou, Z.X. Yue, Z.Q. An, J. Mater. Sci. Mater. 31, 11195 (2020). https://doi.org/10.1007/s10854-020-03667-2

    Article  CAS  Google Scholar 

  15. X.F. Luo, H.J. Tao, P.Z. Li, Y. Fu, H.Q. Zhou, J. Mater. Sci. Mater. 31, 14069 (2020). https://doi.org/10.1007/s10854-020-03961-z

    Article  CAS  Google Scholar 

  16. F. Yang, Y. Yuan, J. Li, C.X. Zhang, J.X. Tong, F.C. Meng, J. Mater. Sci. Mater. 31, 17375 (2020). https://doi.org/10.1007/s10854-020-04293-8

    Article  CAS  Google Scholar 

  17. P. Lu, J.S. Cneng, J.P. Wan, J. Wuhan Univ. Technol. 23, 547 (2008). https://doi.org/10.1007/s11595-006-4547-3

    Article  CAS  Google Scholar 

  18. A.M. Fayad, W.M. Abd-Allah, F.A. Moustafa, Silicon-Neth 10, 799 (2018). https://doi.org/10.1007/s12633-016-9533-6

    Article  CAS  Google Scholar 

  19. S. Baccaro, G. Monika, K.S. Sharma, D. Thind, A. Singh, Cecillia Nucl. Instrum. Meth. B 260, 613 (2007). https://doi.org/10.1016/j.nimb.2007.04.214

    Article  CAS  Google Scholar 

  20. M. Arora, S. Baccaro, G. Sharma, D. Singh, K.S. Thind, D.P. Singh, Nucl. Instrum. Meth. B 267, 817 (2009). https://doi.org/10.1016/j.nimb.2009.01.003

    Article  CAS  Google Scholar 

  21. R. German, P. Suri, S. Park, J. Mater. Sci. 44, 1 (2009). https://doi.org/10.1007/s10853-008-3008-0

    Article  CAS  Google Scholar 

  22. M.F. Zawrah, E.M.A. Hamzawy, Ceram. Int. 28, 123 (2002). https://doi.org/10.1016/S0272-8842(01)00067-0

    Article  CAS  Google Scholar 

  23. X.F. Luo, L.C. Ren, Y.S. Xia et al., Ceram. Int. 43, 6791 (2017). https://doi.org/10.1016/j.ceramint.2017.02.096

    Article  CAS  Google Scholar 

  24. L.C. Ren, X.F. Luo, Y.S. Xia, Y.K. Hu, H.Q. Zhou, Int. J. Appl. Ceram. Technol. 16, 77 (2019). https://doi.org/10.1111/ijac.13057

    Article  CAS  Google Scholar 

  25. N. Chantaramee, S. Tanaka, K. Uematsu, J. Eur. Ceram. Soc. 28, 21 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.05.022

    Article  CAS  Google Scholar 

  26. Z.W. Fu, A. Dellert, M. Lenhart, A. Roosen, J. Eur. Ceram. Soc. 34, 2483 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.03.002

    Article  CAS  Google Scholar 

  27. A. Heunisch, A. Dellert, A. Roosen, J. Eur. Ceram. Soc. 30, 3397 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.08.012

    Article  CAS  Google Scholar 

  28. C.L. Lo, J.G. Duh, B.S. Chiou, W.H. Lee, J. Am. Ceram. Soc. 85, 2230 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00440.x

    Article  CAS  Google Scholar 

  29. I.J. Induja, K.P. Surendran, M.R. Varma, M.T. Sebastian, Ceram. Int. 43, 736 (2017). https://doi.org/10.1016/j.ceramint.2016.10.002

    Article  CAS  Google Scholar 

  30. S. Ghabezloo, Constr. Build. Mater. 24, 1796 (2010). https://doi.org/10.1016/j.conbuildmat.2010.03.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Key Research and Development Program of Zhejiang Province (Grant Nos. 2020C0112, 2021C01092)

Funding

This work was financed by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Key Research and Development Program of Zhejiang Province (Grant Nos. 2020C0112, 2021C01092).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. QW and YL contributed to the conception of this study, performed the experiment, analyzed the data, and wrote the manuscript. YS, SL, TQ, XW, and HZ helped to perform the analysis with constructive discussions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongqing Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Lu, Y., Shan, Y. et al. Boron network ion modulation and composite alumina densification sintering study of MABS glass for LTCC. J Mater Sci: Mater Electron 34, 2086 (2023). https://doi.org/10.1007/s10854-023-11450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11450-2

Navigation