Skip to main content
Log in

Investigation of electrical properties of the boron phosphide-filled polyaniline composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the thermoelectric properties of boron phosphide-filled polyaniline (PANI/BP) composites were examined. The composites containing different weight ratios of BP such as 0.5%, 1%, 3%, 5%, 7%, and 10% were prepared by the in situ oxidative chemical polymerization of aniline. From the electrical conductivity measurements, it was observed that the electrical conductivity of the pure PANI increased from 2.93 to 117 Scm−1 with the addition of 7% BP. Seebeck coefficient measurements showed that all the composites have negative Seebeck coefficients which is the characteristics of n-type conductors. The largest Seebeck coefficient was found as − 78.8 µVK−1 from the composite containing 0.5% BP. Furthermore, the highest power factor was calculated as 45.3 µWm−1 K−2 indicating that BP is a promising additive for the thermoelectric composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

References

  1. J. Bitenieks, K. Buks, R. Merijs-Meri, J. Andzane, T. Ivanova, L. Bugovecka, V. Voikiva, J. Zicans, D. Erts, Polymers (2021). https://doi.org/10.3390/polym13234264

    Article  Google Scholar 

  2. B. Kim, J.U. Hwang, E. Kim, Energy Environ. Sci. (2020). https://doi.org/10.1039/C9EE02399B

    Article  Google Scholar 

  3. K.W. Shah, S.X. Wang, D.X.Y. Soo, J. Xu, Appl. Sci. (2019). https://doi.org/10.3390/app9071422

    Article  Google Scholar 

  4. D. Park, H. Ju, J. Kim, Polymers (2020). https://doi.org/10.3390/polym12040777

    Article  Google Scholar 

  5. K. Sarkar, A. Debnath, K. Deb, A. Bera, B. Saha, Energy (2019). https://doi.org/10.1016/j.energy.2019.04.045

    Article  Google Scholar 

  6. Y. Zhang, Q. Zhang, G. Chen, Carbon Energy (2020). https://doi.org/10.1002/cey2.68

    Article  Google Scholar 

  7. S. Peng, D. Wang, J. Lu, M. He, C. Xu, Y. Li, S. Zhu, J. Polym. Environ. (2017). https://doi.org/10.1007/s10924-016-0895-z

    Article  Google Scholar 

  8. X. Hu, K. Zhang, J. Zhang, S. Wang, Y. Qiu, ACS Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b00909

    Article  Google Scholar 

  9. L. Wang, Y. Liu, Z. Zhang, B. Wang, J. Qiu, D. Hui, S. Wang, Compos. B: Eng. (2017). https://doi.org/10.1016/j.compositesb.2017.04.019

    Article  Google Scholar 

  10. S. Liu, H. Li, P. Li, Y. Liu, C. He, CCS Chem. (2021). https://doi.org/10.31635/ccschem.021.202101066

    Article  Google Scholar 

  11. C. Zhang, H. Li, Y. Liu, P. Li, S. Liu, C. He, Materials (2022). https://doi.org/10.3390/ma15238644

    Article  Google Scholar 

  12. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Front. Mater. (2021). https://doi.org/10.3389/fmats.2021.611078

    Article  Google Scholar 

  13. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergül, Z. Ikonic, M.S. Toprak, H.H. Radamson, ECS J. Solid State Sci. Technol. (2017). https://doi.org/10.1149/2.0021710jss

    Article  Google Scholar 

  14. Y. Miao, G. Wang, Z. Kong, B. Xu, X. Zhao, X. Luo, H. Lin, Y. Dong, B. Lu, L. Dong, J. Zhou, H.H. Radamson, Nanomaterials (2021). https://doi.org/10.3390/nano11102556

    Article  Google Scholar 

  15. M. Noroozi, B. Hamawandi, M. S. Toprak, H. H. Radamson, Fabrication and thermoelectric characterization of GeSn nanowires, in 15th International Conference on Ultimate Integration on Silicon (ULIS), Stockholm, Sweden (2014), pp. 125–128. https://doi.org/10.1109/ULIS.2014.6813914

  16. Z. Liu, W. Ma, X. Ye, in Anisotropic Particle Assemblies. ed. by N. Wu, D. Lee, A. Striolo (Elsevier, Amsterdam, 2018), p.37

    Chapter  Google Scholar 

  17. Kudrawiec, R. (2023). Encyclopedia of Condensed Matter Physics Electronic states of semiconductor compounds and alloys. (Elsevier, pp. 453–468)

  18. Y. Kumashiro, M. Hirabayashi, T. Koshiro, Y. Okada, J. Less-common met. (1988). https://doi.org/10.1016/0022-5088(88)90040-9

    Article  Google Scholar 

  19. K. Woo, K. Lee, K. Kovnir, Mater. Res. Express. (2016). https://doi.org/10.1088/2053-1591/3/7/074003

    Article  Google Scholar 

  20. Y. Mogulkoc, M. Modarresi, A. Mogulkoc, B. Alkan, Phys. Chem. Chem. Phys. (2018). https://doi.org/10.1039/C8CP00994E

    Article  Google Scholar 

  21. Y. Kumashiro, T. Yokoyama, A. Sato, Y. Ando, J. Solid State Chem. (1997). https://doi.org/10.1006/jssc.1997.7493

    Article  Google Scholar 

  22. M.S. Li, D.C. Mo, S.S. Lyu, Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-89579-5

    Article  Google Scholar 

  23. K. Kumashiro, K. Hirata, K. Sato, T. Yokoyama, T. Aisu, T. Ikeda, M. Minaguchi, J. Solid State Chem. (2000). https://doi.org/10.1006/jssc.2000.8806

    Article  Google Scholar 

  24. S. Yugo, T. Sato, T. Kimura, Appl. Phys. Lett. (1985). https://doi.org/10.1063/1.95904

    Article  Google Scholar 

  25. V.A. Mukhanov, D. Vrel, P.S. Sokolov, Y. Le Godec, V.L. Solozhenko, Dalton Trans. (2016). https://doi.org/10.1039/C6DT00435K

    Article  Google Scholar 

  26. V. Ugraskan, F. Karaman, J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08506-y

    Article  Google Scholar 

  27. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  28. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  29. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charac. 85, 111 (2013)

    Article  CAS  Google Scholar 

  30. B. Padavala, H. Al Atabi, L. Tengdelius, J. Lu, H. Högberg, J.H. Edgar, J. Cryst. Growth. (2018). https://doi.org/10.1016/j.jcrysgro.2017.11.014

    Article  Google Scholar 

  31. Y. Du, K. Cai, S.Z. Shen, Funct. Mater. Lett. (2013). https://doi.org/10.1142/S179360471340002X

    Article  Google Scholar 

  32. U. M. Chougale, J. V. Thombare, V. J. Fulari, A. B. Kadam, Synthesis of polyaniline nanofibres by SILAR method for supercapacitor application, in 2013 International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India (2013), pp. 1078–1083. https://doi.org/10.1109/ICEETS.2013.6533537

  33. M. Mamlouk, K. Scott, J. Power Sources (2015). https://doi.org/10.1016/j.jpowsour.2015.03.169

    Article  Google Scholar 

  34. C. Su, L. Wang, L. Xu, C. Zhang, Electrochim. Acta. (2013). https://doi.org/10.1016/j.electacta.2013.04.127

    Article  Google Scholar 

  35. Y.S. Thakur, A.D. Acharya, S. Sharma, Results Opt. (2023). https://doi.org/10.1016/j.rio.2023.100400

    Article  Google Scholar 

  36. Y. Wang, C. Yu, M. Sheng, S. Song, Y. Deng, Adv. Mater. Interfaces. (2018). https://doi.org/10.1002/admi.201701168

    Article  Google Scholar 

  37. A. Debnath, K. Deb, K. Sarkar, B. Saha, J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08241-4

    Article  Google Scholar 

  38. K. Chatterjee, M. Mitra, K. Kargupta, S. Ganguly, D. Banerjee, Nanotechnology (2013). https://doi.org/10.1088/0957-4484/24/21/215703

    Article  Google Scholar 

  39. L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, L. Chen, J. Mater. Chem. A (2015). https://doi.org/10.1039/C4TA06422D

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FMY and VU carried out the synthesis and characterizations. VU performed the thermoelectric analysis. VU wrote the manuscript with support from OY. VU and OY discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ozlem Yazici.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, F.M., Ugraskan, V. & Yazici, O. Investigation of electrical properties of the boron phosphide-filled polyaniline composites. J Mater Sci: Mater Electron 34, 2000 (2023). https://doi.org/10.1007/s10854-023-11430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11430-6

Navigation