Skip to main content
Log in

Growth and property evaluation of nickel–graphite core–shell nanoparticles based on temperature parameters for utilization in silver paste

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, the change in the growth characteristics of nickel (Ni)–graphite core–shell nanoparticles (CSNP) based on growth time using thermal chemical vapor deposition method and its utilization in silver (Ag) paste is presented. The characteristics of the graphite shell formed on the surface of Ni–graphite CSNPs exhibited changes in structure, crystallinity, and thickness depending on the growth time. Changes in the characteristics of the graphite shell caused changes in the electrical characteristics of Ni–graphite CSNPs. Ni–graphite CSNPs synthesized based on growth time were able to present synthesis conditions with the most similar characteristics to Ag powder through electrical characteristic evaluation. In addition, through the commercialized Ag paste process, it was suggested that some of the Ag powder could be replaced with Ni–graphite CSNPs and utilized. Through this approach, a plan to improve the price competitiveness of expensive Ag paste was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. R.K.L. Tan, S.P. Reeves, N. Hashemi, D.G. Thomas, E. Kavak, R. Montazami, N.N. Hashemi, J. Mater. Chem. A 5, 17777 (2017)

    Article  CAS  Google Scholar 

  2. T. Albes, L. Xu, J. Wang, W.P. Hsu, A. Gagliardi, J. Phys. Chem. C 122, 15140 (2018)

    Article  CAS  Google Scholar 

  3. S. Zhu, J. Sheng, Y. Chen, J. Ni, Y. Li, Natl. Sci. Rev. 8, 1 (2021)

    CAS  Google Scholar 

  4. D. Wu, S.M. Jayawickrama, T. Fujigaya, J. Power Sources 549, 232079 (2022)

    Article  CAS  Google Scholar 

  5. F. Liu, C.W. Lee, J.S. Im, J. Nanomater. 2013, 1 (2013)

    Google Scholar 

  6. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)

    Article  CAS  Google Scholar 

  7. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, Nat. Nanotechnol. 3, 101 (2008)

    Article  CAS  Google Scholar 

  8. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Mater. Today 15, 564 (2012)

    Article  CAS  Google Scholar 

  9. J. Zhao, N. Fu, R. Liu, ACS Appl. Mater. Interfaces 10, 28509 (2018)

    Article  CAS  Google Scholar 

  10. S. Magdassi, M. Grouchko, A. Kamyshny, Materials 22, 3882 (2012)

    Google Scholar 

  11. Y. Fan, W. Jiang, A. Kawasaki, Adv. Funct. Mater. 22, 3882 (2012)

    Article  CAS  Google Scholar 

  12. S. Kim, Y. Yang, W.Y. Kim, Mol. Cryst. Liq. Cryst. 704, 112 (2020)

    Article  CAS  Google Scholar 

  13. M. Chatenet, F. Micoud, I. Roche, E. Chainet, Electrochim. Acta 51, 5459 (2006)

    Article  CAS  Google Scholar 

  14. A. Safavi, M. Tohidi, Anal. Chem. 83, 5502 (2011)

    Article  CAS  Google Scholar 

  15. M. Hosseini, M.M. Momeni, J. Mater. Sci. 45, 3304 (2010)

    Article  CAS  Google Scholar 

  16. A. Safavi, M. Tohidi, Anal. Methods 4, 2233 (2012)

    Article  CAS  Google Scholar 

  17. C.D. Kim, N.T.N. Truong, V.T.H. Pham, Y. Jo, H.R. Lee, C. Park, Mater. Chem. Phys. 223, 557 (2019)

    Article  CAS  Google Scholar 

  18. X. Zhao, Y. Ando, Jpn. J. Appl. Phys. 37, 4846 (1998)

    Article  CAS  Google Scholar 

  19. N. Morimoto, T. Kubo, Y. Nishina, Sci. Rep. 6, 21715 (2016)

    Article  CAS  Google Scholar 

  20. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray photoelectron spectroscopy (Physical Electronics Inc, Chanhassen, 1995)

    Google Scholar 

  21. J. Wu, M. Lin, X. Cong, H. Liu, P. Tan, Chem. Soc. Rev. 47, 1822 (2018)

    Article  CAS  Google Scholar 

  22. H.D. Le, T.T.T. Ngo, D.Q. Le, X.N. Nguyen, N.M. Phan, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 035012 (2013)

    Article  Google Scholar 

  23. N. Yang, C. Li, Y. Tang, Mater. Res. Express 7, 115001 (2020)

    Article  CAS  Google Scholar 

  24. F. Farivar, P.L. Yap, C 7, 1 (2021)

    Google Scholar 

  25. A.K. Geim, K.S. Novoselov, Nat. Mater 6, 183 (2007)

    Article  CAS  Google Scholar 

  26. N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Nanotechnology 19, 445201 (2008)

    Article  Google Scholar 

  27. M. Ma, Z. Zhu, B. Wu, S. Chen, Y. Shi, X. Wang, Mater. Lett. 190, 71 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Materials/Parts Technology Development Program (20007170, Development of carbon materials for fuel cell electrode of FCEV), Technology Innovation Program (20006820, Development of automated system for electrochemical exfoliation of synthetic graphite production residue and multifunctional composite) funded by Ministry of Trade, Industry & Energy (MOTIE, Korea). A portion of this work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRK) funded by the Ministry Education (Grant Number—NRF-2022R1I1A1A01071414). The authors extend their sincere appreciation to the Researchers Supporting Project number (RSP2023R370), King Saud University, Riyadh, Saudi Arabia for the financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation, conceptualization, data interpretation, writing—review and editing, SBK, KSL, DCC, and JJ; data curation validation, resources, NHL and SFS; visualization, formal analysis, supervision, JHJ; project administration, funding acquisition, NTNT and CDK. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jae-hak Jung, Nguyen Tam Nguyen Truong or Chang-Duk Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or Personal relationships that could appear to influence the work reported in this paper

Ethical approval

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S.B., Lee, K.S., Chung, D.C. et al. Growth and property evaluation of nickel–graphite core–shell nanoparticles based on temperature parameters for utilization in silver paste. J Mater Sci: Mater Electron 34, 1912 (2023). https://doi.org/10.1007/s10854-023-11371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11371-0

Navigation