Skip to main content
Log in

Effect of Co2+ Substitution on the Microwave Dielectric Properties of LiZnPO4 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microstructure, sintering behavior, and microwave dielectric properties of LiZn1−xCoxPO4 (x = 0.00–0.10) ceramics were investigated. All these materials were synthesized by the traditional solid-state reaction method. Component and microstructure of the ceramics were verified by x-ray diffraction (XRD) patterns and scanning electron microscopy (SEM), respectively. The substitution of Co2+-ion to Zn2+-ion would improve the densification level of composite ceramics, and the microwave dielectric properties would be changed accordingly. An excellent microwave dielectric property of LiZn1−xCoxPO4 (x = 0.00–0.10) was achieved when x = 0.07 (ɛr = 5.43, Q × f = 35,446 GHz at 15 GHz, τf = − 77.4 ppm/°C). In order to achieve reliable thermal stability, Pb1.5Nb2O6.5 was used to adjust its τf value. The LiZn0.93Co0.07PO4 ceramics with 6 vol.% Pb1.5Nb2O6.5 sintered at 750°C for 4 h shows a near-zero τf value of − 4.4 ppm/°C, ɛr = 6.09, Q × f = 14,305 GHz (at 15 GHz), and there was no chemical reaction between Pb1.5Nb2O6.5 and LiZn0.93Co0.07PO4. The composite ceramics are promising materials for millimeter-wave device applications in the field of low temperature co-fired ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, Y. Tohdo, T. Okawa, K. Kakimoto, and H. Ogawa, Key Eng. Mater. 269, 195 (2004).

    Article  CAS  Google Scholar 

  2. X.-C. Wang, W. Lei, R. Ang, and W.-Z. Lu, Ceram. Int. 39, 1707 (2013).

    Article  CAS  Google Scholar 

  3. S.-H. Kweon, M.-R. Joung, J.-S. Kim, B.-Y. Kim, S. Nahm, J.-H. Paik, Y.-S. Kim, and T.-H. Sung, J. Am. Ceram. Soc. 94, 1995 (2011).

    Article  CAS  Google Scholar 

  4. H.-W. Chen, H. Su, H.-W. Zhang, T.-C. Zhou, B.-W. Zhang, J.-F. Zhang, and X.-L. Tang, Ceram. Int. 40, 14655 (2014).

    Article  CAS  Google Scholar 

  5. A. Feteira and D.C. Sinclair, J. Am. Ceram. Soc. 91, 1338 (2008).

    Article  CAS  Google Scholar 

  6. G.-G. Yao, P. Liu, H.-W. Zhang, and J. Calame, J. Am. Ceram. Soc. 96, 1691 (2013).

    Article  CAS  Google Scholar 

  7. S. George, P.S. Anjana, V.N. Deepu, P. Mohanan, and M.T. Sebastian, J. Am. Ceram. Soc. 92, 1244 (2009).

    Article  CAS  Google Scholar 

  8. J.-S. Kim, N.-H. Nguyen, J.-B. Lim, D.-S. Paik, S. Nahm, J.-H. Paik, J.-H. Kim, and H.-J. Lee, J. Am. Ceram. Soc. 91, 671 (2008).

    Article  CAS  Google Scholar 

  9. Z. Cheng, X. Hu, Y. Li, Z. Ling, and N. Alford, J. Am. Ceram. Soc. 99, 2688 (2016).

    Article  CAS  Google Scholar 

  10. Z.W. Dong, Y. Zheng, P. Cheng, X.P. Lv, and W. Zhou, Ceram. Int. 40, 12983 (2014).

    Article  CAS  Google Scholar 

  11. K. Fukuda, R. Kitoh, and I. Awai, Jpn. J. Appl. Phys. 32, 4584 (1993).

    Article  CAS  Google Scholar 

  12. Z.W. Dong, Y. Zheng, P. Cheng, X.P. Lv, W.Y. Zhang, W. Zhou, and W.H. Xiong, Ceram. Int. 40, 14865 (2014).

    Article  CAS  Google Scholar 

  13. C.C. Xia, D.H. Jiang, G.H. Chen, Y. Luo, B. Li, C.L. Yuan, and C.R. Zhou, J. Mater. Sci. Mater. Electron. 28, 12026 (2017).

    Article  CAS  Google Scholar 

  14. C. Zhang, R. Zuo, J. Zhang, Y. Wang, and J. Jones, J. Am. Ceram. Soc. 98, 702 (2015).

    Article  CAS  Google Scholar 

  15. M.B. Bechir, A.B. Rhaiem, and K. Guidara, Bull. Mater. Sci. 37, 473 (2014).

    Article  CAS  Google Scholar 

  16. T. Sugiyama, T. Tsunooka, K.-I. Kakimoto, and H. Ohsato, J. Eur. Ceram. Soc. 26, 2097 (2006).

    Article  CAS  Google Scholar 

  17. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  CAS  Google Scholar 

  18. R. Ubic and I.M. Reaney, J. Am. Ceram. Soc. 85, 2472 (2010).

    Article  Google Scholar 

  19. B.W. Hakki and P.D. Coleman, IRE Trans. Microw. Theory Tech. 8, 402 (2003).

    Article  Google Scholar 

  20. H. Zhuang, Z. Yue, F. Zhao, J. Pei, and L. Li, J. Alloys Compd. 472, 411 (2009).

    Article  CAS  Google Scholar 

  21. Y. Lv, R. Zuo, Y. Cheng, C. Zhang, and P. Davies, J. Am. Ceram. Soc. 96, 3862 (2013).

    Article  CAS  Google Scholar 

  22. M. Guo, G. Dou, S. Gong, and D. Zhou, J. Eur. Ceram. Soc. 32, 883 (2012).

    Article  CAS  Google Scholar 

  23. V.L. Gurevich and A.K. Tagantsev, Adv. Phys. 40, 719 (1991).

    Article  CAS  Google Scholar 

  24. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, J. Am. Ceram. Soc. 80, 1885 (1997).

    Article  CAS  Google Scholar 

  25. Y.-N. Wang, Y.-C. Chen, S.-L. Yao, and C.-Y. Wu, Ceram. Int. 40, 2641 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National key R&D program No. 2017YFB0406300, Sichuan science and technology supporting program Nos. 2016GZ0245 and 2016GZ0261, Guizhou science and technology major projects [2016] No. 3011, and the Dongguan entrepreneurial talent program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanxun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, R., Li, Y., Yu, G. et al. Effect of Co2+ Substitution on the Microwave Dielectric Properties of LiZnPO4 Ceramics. J. Electron. Mater. 47, 7281–7287 (2018). https://doi.org/10.1007/s11664-018-6665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6665-z

Keywords

Navigation