Skip to main content
Log in

Composition-dependent structural, physical, optical, and electrical properties of Ba0.5Ca0.5EuxFe12−xO19 hexaferrites for prospective applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ba0.5Ca0.5EuxFe12−xO19 (x = 0, 0.5, 1.0, 1.5, and 2.0) series of samples with crystallite size 29–38 nm were prepared using the co-precipitation synthesis technique. The X-ray diffraction pattern analysis confirms the hexagonal structure of the Ba0.5Ca0.5EuxFe12−xO19 samples. The value of lattice parameters of the Ba0.5Ca0.5Fe12−xO19: xEu samples increased as compared to the pure Ba0.5Ca0.5Fe12O19 sample. This increase is related to cation substitution i.e., smaller cations (Fe3+ ions) are replaced by larger cations (Eu3+ ions). The crystallite size of the Ba0.5Ca0.5Fe12−xO19: xEu samples decreases continuously with increasing Eu3+ ions substitution. The shifting of octahedral and tetrahedral clusters was observed in the FTIR spectra due to substitution of Eu3+ ions. The photoluminescence (PL) spectra of the Ba0.5Ca0.5EuxFe12−xO19 samples were observed at 365 nm which corresponds to 5D47F0 transition of Eu3+ ions. The PL spectra shifted toward the higher wave length side for x ≥ 1.0 due to reabsorption. The dielectric dispersion in the Ba0.5Ca0.5EuxFe12−xO19 samples can be understood by Maxwell–Wagner type of interfacial polarization based on Koop’s theory. The increased hopping rate at octahedral sites due to the substitution of Eu3+ ions is responsible for a higher dielectric constant. The activation energy of the Ba0.5Ca0.5EuxFe12−xO19 samples was estimated from the temperature dependence of dc conductivity plots. The frequency dependency of ac conductivity of Ba0.5Ca0.5EuxFe12−xO19 samples can be described on the basis of Jonscher’s power law and correlated barrier hopping (CBH) model. Below 380 K, the CBH mechanism describes the conduction mechanism, and above 380 K, the conduction mechanism can be understood by small polaron tunneling without overlapping (NSPT) model in the Ba0.5Ca0.5Fe12O19 compound. In the Eu-substituted Ba0.5Ca0.5Fe12O19 compound, only CBH mechanism dominates in the conduction process for all the temperatures. The Ba0.5Ca0.5EuxFe12−xO19 samples exhibit non-Debye dielectric behavior as confirmed by complex impedance spectroscopy analysis. By substituting Eu3+ ions, dielectric constant increases drastically and dielectric loss decreases as compared to pure sample. This indicates that the Ba0.5Ca0.5EuxFe12−xO19 samples can be potentially applied for microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All the relevant data generated or analyzed are included in this article.

References

  1. I. Paulowicz, V. Hrkac, S. Kaps, V. Cretu, O. Lupan, T. Braniste, V. Duppel, I. Tiginyanu, L. Kienle, R. Adelung, Y.K. Mishra, Adv. Electron. Mater. 1, 1 (2015)

    Article  Google Scholar 

  2. O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y.K. Mishra, L. Kienle, R. Adelung, I. Tiginyanu, Sens.Actuators B Chem. 221, 544 (2015)

    Article  CAS  Google Scholar 

  3. J. Gröttrup, I. Paulowicz, A. Schuchardt, V. Kaidas, S. Kaps, O. Lupan, R. Adelung, Y.K. Mishra, Ceram. Int. 42, 8664 (2016)

    Article  Google Scholar 

  4. D. Lisjak, M. Drofenik, J. Eur. Ceram. Soc. 27, 4515 (2007)

    Article  CAS  Google Scholar 

  5. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, K. Marina, Mater. Lett. 63, 1921 (2009)

    Article  CAS  Google Scholar 

  6. A.S. Gibbs, K.S. Knight, P. Lightfoot, Phys. Rev. B - Condens. Matter Mater. Phys. 83, 1 (2011)

    Article  Google Scholar 

  7. D. Hirabayashi, T. Yoshikawa, Y. Kawamoto, K. Mochizuki, K. Suzuki, in 11th International Ceramics Congress, vol. 45 (2006), p. 2169

  8. J.C. Lou, C.K. Chang, Environ. Eng. Sci. 23, 1024 (2006)

    Article  CAS  Google Scholar 

  9. S. Katlakunta, P. Raju, S.S. Meena, S. Srinath, R. Sandhya, P. Kuruva, S.R. Murthy, Phys. B Condens. Matter 448, 323 (2014)

    Article  CAS  Google Scholar 

  10. C. Liu, X. Liu, S. Feng, K.M.U. Rehman, M. Li, C. Zhang, H. Li, X. Meng, J. Magn. Magn. Mater. 436, 126 (2017)

    Article  CAS  Google Scholar 

  11. S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, S.M. Yusuf, J. Magn. Magn. Mater. 350, 23 (2014)

    Article  CAS  Google Scholar 

  12. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)

    Article  CAS  Google Scholar 

  13. V.S. Shinde, S.G. Dahotre, L.N. Singh, Heliyon 6, e03186 (2020)

    Article  CAS  Google Scholar 

  14. Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. Dai, W.H. Song, J. Magn. Magn. Mater. 320, 2746 (2008)

    Article  CAS  Google Scholar 

  15. J. Mahapatro, S. Agrawal, J. Alloys Compd. 907, 164405 (2022)

    Article  CAS  Google Scholar 

  16. Z.W. Li, L. Chen, C.K. Ong, J. Appl. Phys. 92, 3902 (2002)

    Article  CAS  Google Scholar 

  17. Y.-J. Kim, S.-S. Kim, IEEE Trans. Magn. 38, 3108 (2002)

    Article  CAS  Google Scholar 

  18. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, M.N. Ashiq, S. Naseem, J. Alloys Compd. 550, 564 (2013)

    Article  CAS  Google Scholar 

  19. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, J. Mater. Sci. Mater. Electron. 23, 1575 (2012)

    Article  CAS  Google Scholar 

  20. M.N. Ashiq, R.B. Qureshi, M.A. Malana, M.F. Ehsan, J. Alloys Compd. 617, 437 (2014)

    Article  CAS  Google Scholar 

  21. J. Singh, C. Singh, D. Kaur, S. Bindra Narang, R. Jotania, R. Joshi, J. Mater. Sci. Mater. Electron. 28, 2377 (2017)

    Article  CAS  Google Scholar 

  22. S.K. Godara, V. Kaur, K. Chuchra, S.B. Narang, G. Singh, M. Singh, A. Chawla, S. Verma, G.R. Bhadu, J.C. Chaudhari, P.D. Babu, A.K. Sood, Results Phys. 22, 103892 (2021)

    Article  Google Scholar 

  23. Y. Marouani, A. Mabrouki, R. Dhahri, E. Dhahri, B.F.O. Costa, Inorg. Chem. Commun. 136, 109163 (2022)

    Article  CAS  Google Scholar 

  24. C. Wang, X. Han, P. Xu, X. Wang, X. Li, H. Zhao, J. Alloys Compd. 476, 560 (2009)

    Article  CAS  Google Scholar 

  25. J. Chand, M. Singh, J. Alloys Compd. 486, 376 (2009)

    Article  CAS  Google Scholar 

  26. H. Su, H. Zhang, X. Tang, B. Liu, Z. Zhong, J. Alloys Compd. 475, 683 (2009)

    Article  CAS  Google Scholar 

  27. M.A. Elkestawy, J. Alloys Compd. 492, 616 (2010)

    Article  CAS  Google Scholar 

  28. S. Mehmood, M. Anis-ur-Rehman, Mater. Res. Express 6, 126328 (2020)

    Article  Google Scholar 

  29. M.J. Iqbal, S. Farooq, J. Alloys Compd. 505, 560 (2010)

    Article  CAS  Google Scholar 

  30. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, Mater. Res. Bull. 47, 188 (2012)

    Article  CAS  Google Scholar 

  31. R. Joshi, C. Singh, J. Singh, D. Kaur, S.B. Narang, R.B. Jotania, J. Mater. Sci. Mater. Electron. 28, 11969 (2017)

    Article  CAS  Google Scholar 

  32. R. Joshi, C. Singh, D. Kaur, H.M. Zaki, S. Bindra Narang, R. Jotania, S.R. Mishra, J. Singh, P. Dhruv, M. Ghimire, J. Alloys Compd. 695, 909 (2017)

    Article  CAS  Google Scholar 

  33. M. Awawdeh, I. Bsoul, S.H. Mahmood, J. Alloys Compd. 585, 465 (2014)

    Article  CAS  Google Scholar 

  34. A. Baykal, I.A. Auwal, S. Güner, H. Sözeri, J. Magn. Magn. Mater. 430, 29 (2017)

    Article  CAS  Google Scholar 

  35. A. Davoodi, B. Hashemi, J. Alloys Compd. 509, 5893 (2011)

    Article  CAS  Google Scholar 

  36. A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, K. Prokeš, K. Siemensmeyer, B. Klemke, H. Nakotte, J. Appl. Phys. 114, 4 (2013)

    Article  Google Scholar 

  37. T. Ben Ghzaiel, W. Dhaoui, A. Pasko, F. Mazaleyrat, J. Alloys Compd. 671, 245 (2016)

    Article  CAS  Google Scholar 

  38. J. Fang, J. Wang, L.M. Gan, S.C. Ng, J. Ding, X. Liu, J. Am. Ceram. Soc. 83, 1049 (2000)

    Article  CAS  Google Scholar 

  39. P. Kaur, S.K. Chawla, S.S. Meena, S.M. Yusuf, S.B. Narang, Ceram. Int. 42, 14475 (2016)

    Article  CAS  Google Scholar 

  40. J. Mahapatro, S. Agrawal, Ceram. Int. 47, 20529 (2021)

    Article  CAS  Google Scholar 

  41. T.R. Wagner, T.J. Styranec, J. Solid State Chem. 138, 313 (1998)

    Article  CAS  Google Scholar 

  42. P. Scherrer, in Nachr. Ges. Wiss. Göttingen (Springer, Berlin, 1918), p. 98.

  43. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  44. A. Thakur, R.R. Singh, P.B. Barman, Mater. Chem. Phys. 141, 562 (2013)

    Article  CAS  Google Scholar 

  45. S.K. Abdel-Aal, A.I. Beskrovnyi, A.M. Ionov, R.N. Mozhchil, A.S. Abdel-Rahman, Phys. Status Solidi Appl. Mater. Sci. 218, 1 (2021)

    Google Scholar 

  46. S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, A.S. Abdel-Rahman, Phys. Status Solidi Appl. Mater. Sci. 218, 1 (2021)

    Google Scholar 

  47. S.K. Abdel-Aal, A.S. Abdel-Rahman, J. Nanopart. Res. 22, 267 (2020)

    Article  CAS  Google Scholar 

  48. A. S. Abdel-Rahman, Res. Sq. https://doi.org/10.21203/rs.3.rs-2281463/v2 (2023)

  49. C.D. Patel, P.N. Dhruv, S.S. Meena, C. Singh, S. Kavita, M. Ellouze, R.B. Jotania, Ceram. Int. 46, 24816 (2020)

    Article  CAS  Google Scholar 

  50. T. Gupta, C.C. Chauhan, A.R. Kagdi, S.S. Meena, R.B. Jotania, C. Singh, C.B. Basak, Ceram. Int. 46, 8209 (2020)

    Article  CAS  Google Scholar 

  51. S.R. Ejaz, M.A. Khan, M.F. Warsi, M.N. Akhtar, A. Hussain, Ceram. Int. 44, 18903 (2018)

    Article  CAS  Google Scholar 

  52. S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. El Shersaby, Phys. B Condens. Matter 426, 137 (2013)

    Article  CAS  Google Scholar 

  53. M. F. Kandeel, S. K. Abdel-Aal, A. F. El-Sherif, H. S. Ayoub, A. S. Abdel-Rahman, in IOP Conf. Ser. Mater. Sci. Eng. (2019)

  54. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Acta Crystallogr. Sect. B Sci. Cryst. Eng. Mater. 75, 880 (2019)

    Article  CAS  Google Scholar 

  55. K. Swapna, S. Mahamuda, A.S. Rao, T. Sasikala, P. Packiyaraj, L.R. Moorthy, G.V. Prakash, J. Lumin. 156, 80 (2014)

    Article  CAS  Google Scholar 

  56. D. Hong, J. Li, S. Wan, I.G. Scheblykin, Y. Tian, J. Phys. Chem. C 123, 12521 (2019)

    Article  CAS  Google Scholar 

  57. H. Diab, C. Arnold, F. Le, E. Deleporte, D. Garrot, (2017)

  58. F. Staub, I. Anusca, D. C. Lupascu, U. Rau, T. Kirchartz, J. Phys. Mater. 3 (2020)

  59. E.I. Naik, H.S.B. Naik, R.V.I.K. Suresh, G.M.C. Prabhakara, S.N. Appl, Sci. 2, 1 (2020)

    Article  Google Scholar 

  60. C. Linarès, J. Phys. 29, 917 (1968)

    Article  Google Scholar 

  61. S. López-Romero, M.J. Quiroz-Jiménez, M.H. García, A. Aguilar-Castillo, World J. Condens. Matter Phys. 04, 227 (2014)

    Article  Google Scholar 

  62. S. Som, P. Mitra, V. Kumar, V. Kumar, J.J. Terblans, H.C. Swart, S.K. Sharma, Dalt. Trans. 43, 9860 (2014)

    Article  CAS  Google Scholar 

  63. G. Hu, X. Hu, W. Chen, Y. Cheng, Z. Liu, Y. Zhang, X. Liang, W. Xiang, Mater. Res. Bull. 95, 277 (2017)

    Article  CAS  Google Scholar 

  64. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  65. J.C. Maxwell, Oxford Univ. Press London 4 (1873)

  66. K.W. Wagner, Ann. Phys. 345, 817 (1913)

    Article  Google Scholar 

  67. M. Naeem, R. Beenish, M. Aslam, M. Fahad, J. Alloys Compd. 651, 266 (2015)

    Article  Google Scholar 

  68. K. Pubby, S. Bindra, N.S.K. Chawla, J. Mater. Sci. Mater. Electron. 27, 11220 (2016)

    Article  CAS  Google Scholar 

  69. M.A. Dar, V. Verma, S.P. Gairola, W.A. Siddiqui, R.K. Singh, R.K. Kotnala, Appl. Surf. Sci. 258, 5342 (2012)

    Article  Google Scholar 

  70. I.A. Auwal, B. Ünal, H. Güngüneş, S.E. Shirsath, A. Baykal, Ceram. Int. 42, 9100 (2016)

    Article  CAS  Google Scholar 

  71. G. Rana, U.C. Johri, K. Asokan, EPL 103, 17008 (2013)

    Article  Google Scholar 

  72. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Phys. Chem. Solids 73, 713 (2012)

    Article  CAS  Google Scholar 

  73. B.B. Sahu, S.K. Patri, B. Behera, B. Maharana, J. Adv. Dielectr. 8, 1850022 (2018)

    Article  CAS  Google Scholar 

  74. J. Mohammed, A.B. Suleiman, T. Tchouank Tekou Carol, H.Y. Hafeez, J. Sharma, P.K. Maji, S.G. Kumar, A.K. Srivastava, Chin. Phys. B 27, 128104 (2018)

    Article  CAS  Google Scholar 

  75. A. K. Jonscher, Chelsea Dielectric Press, London (1996)

  76. M.H. Asghar, F. Placido, S. Naseem, Eur. Phys. J. Appl. Phys. 184, 177 (2006)

    Article  Google Scholar 

  77. D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Chem. Chem. Phys. 19, 210 (2017)

    Article  CAS  Google Scholar 

  78. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, J. Phys. D. Appl. Phys. 44, 355402 (2011)

    Article  Google Scholar 

  79. S.K. Abdel-Aal, A.S. Abdel-Rahman, J. Electron. Mater. 48, 1686 (2019)

    Article  CAS  Google Scholar 

  80. Y. Marouani, J. Massoudi, M. Noumi, A. Benali, E. Dhahri, P. Sanguino, M.P.F. Graça, M.A. Valente, B.F.O. Costa, RSC Adv. 11, 1531 (2021)

    Article  CAS  Google Scholar 

  81. R.I. Mohamed, J. Phys. Chem. Solids 61, 1357 (2000)

    Article  CAS  Google Scholar 

  82. M. Amine Fersi, I. Chaabane, M. Gargouri, Phys. B Condens. Matter 444, 89 (2014)

    Article  CAS  Google Scholar 

  83. R.N. Bhowmik, Ceram. Int. 38, 5069 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Jayashri Mahapatro contributed toward software, method, conceptualization, investigation, writing-original draft. Sadhana Agrawal contributed toward writing-review and editing, supervision, and visualization.

Corresponding author

Correspondence to Sadhana Agrawal.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatro, J., Agrawal, S. Composition-dependent structural, physical, optical, and electrical properties of Ba0.5Ca0.5EuxFe12−xO19 hexaferrites for prospective applications. J Mater Sci: Mater Electron 34, 1838 (2023). https://doi.org/10.1007/s10854-023-11191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11191-2

Navigation