Skip to main content

Advertisement

Log in

Synergetic impact of natural light harvesting materials to reduce the recombination rate and improve the device performance of dye sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Natural pigments extracted from Arachis hypogaea flowers and Cassia grandis leaves were used as novel light harvesting materials for the first time in the fabrication of dye-sensitized solar cells (DSSCs). The extracted individual dyes were labelled as AH, CG and the mixture as AC. The absorption spectra confirmed xanthophyll and chlorophyll pigments in AH, CG and AC with the bandgap of 2.64 eV, 2.7 eV, 2.62 eV. Fourier transform infrared spectroscopy (FTIR) was employed to identify the functional groups present in the dyes. The microstructure, homogeneity, porosity, compositional analysis and roughness of bare and dye loaded TiO2 films were examined using field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray spectroscopy (EDAX) and Atomic force microscopy (AFM). The photovoltaic performance was evaluated through Current–voltage characteristics (J–V), Electrochemical impedance spectroscopy analysis (EIS) and Bode phase plot analysis. The findings revealed that DSSC with co-sensitized dye (AC) exhibited Voc of 533 mV, Jsc of 0.42 mA cm−2 and FF of 0.29 with an improved efficiency that was 1.4 and 2.11 times greater than AH and CG dye based devices respectively. The results proved co-sensitization to be an effective approach to increasing the spectral range and device performance of dye sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data investigated through this study are included in this manuscript as figures and tables.

References

  1. G. Richhariya, A. Kumar, P. Tekasakul, B. Gupta, Renew. Sustain. Energy Rev. 69, 705 (2017)

    Article  CAS  Google Scholar 

  2. N. Prabavathy, S. Shalini, R. Balasundaraprabhu, D. Velauthapillai, S. Prasanna, N. Muthukumarasamy, Int. J. Energy Res. 41, 1372 (2017)

    Article  CAS  Google Scholar 

  3. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  4. H. Hug, M. Bader, P. Mair, T. Glatzel, Appl. Energy 115, 216 (2014)

    Article  CAS  Google Scholar 

  5. E.M. Abdou, H.S. Hafez, E. Bakir, M.S.A. Abdel-Mottaleb, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 115, 20 (2013)

    Google Scholar 

  6. A. Arulraj, S. Govindan, S. Vadivel, B. Subramanian, J. Mater. Sci. Mater. Electron. 28, 18455 (2017)

    Article  CAS  Google Scholar 

  7. P.A. Ahmad, F.A. Mir, F. Ullah, M.A. Bhat, M.H. Rather, Opt. Quantum Electron 55, 1 (2023)

    Article  Google Scholar 

  8. A. Omar, M.S. Ali, N. Abd Rahim, Sol. Energy 207, 1088 (2020)

    Article  CAS  Google Scholar 

  9. G.F.C. Mejica, Y. Unpaprom, D. Balakrishnan, N. Dussadee, S. Buochareon, R. Ramaraj, Sustain. Energy Technol. Assess. 51, 101971 (2022)

    Google Scholar 

  10. K.A. Kumar, K. Subalakshmi, J. Senthilselvan, A.I.P. Conf, Proc. 1731, 1 (2016)

    Google Scholar 

  11. D. Ganta, J. Jara, R. Villanueva, Chem. Phys. Lett. 679, 97 (2017)

    Article  CAS  Google Scholar 

  12. N. Patni, S.G. Pillai, P. Sharma, Int. J. Energy Res. 44, 10846 (2020)

    Article  CAS  Google Scholar 

  13. M. Golshan, S. Osfouri, R. Azin, T. Jalali, N.R. Moheimani, J. Photochem. Photobiol. A Chem. 417, 113345 (2021)

    Article  CAS  Google Scholar 

  14. S. Shah, M.H. Buraidah, L.P. Teo, M.A. Careem, A.K. Arof, Opt. Quantum Electron. 48, 1 (2016)

    Article  CAS  Google Scholar 

  15. S.C. Ezike, C.N. Hyelnasinyi, M.A. Salawu, J.F. Wansah, A.N. Ossai, N.N. Agu, Surf. Interf. 22, 100882 (2021)

    Article  CAS  Google Scholar 

  16. F. Kabir, M.M.H. Bhuiyan, M.S. Manir, M.S. Rahaman, M.A. Khan, T. Ikegami, Results Phys. 14, 102474 (2019)

    Article  Google Scholar 

  17. N.T.R.N. Kumara, P. Ekanayake, A. Lim, L.Y.C. Liew, M. Iskandar, L.C. Ming, G.K.R. Senadeera, J. Alloys Compd. 581, 186 (2013)

    Article  CAS  Google Scholar 

  18. B.-Q. Liu, X.-P. Zhao, W. Luo, Dye. Pigment. 76, 327 (2008)

    Article  CAS  Google Scholar 

  19. A. Arulraj, G. Senguttuvan, S. Veeramani, V. Sivakumar, B. Subramanian, Optik (Stuttg). 181, 619 (2019)

    Article  CAS  Google Scholar 

  20. A. Soosairaj, A. Gunasekaran, S. Anandan, and L. R. Asirvatham, (2023) Environ. Sci. Pollut. Res.

  21. A. Lim, N. Haji Manaf, K. Tennakoon, R.L.N. Chandrakanthi, L.B.L. Lim, J.M.R.S. Bandara, P. Ekanayake, J. Biophys. (2015). https://doi.org/10.1155/2015/510467

    Article  Google Scholar 

  22. H.A. Maddah, V. Berry, S.K. Behura, Renew. Sustain. Energy Rev. 121, 109678 (2020)

    Article  CAS  Google Scholar 

  23. R. Ramamoorthy, N. Radha, G. Maheswari, S. Anandan, S. Manoharan, R. Victor Williams, J. Appl. Electrochem. 46, 929 (2016)

    Article  CAS  Google Scholar 

  24. A. Gunasekaran, A. Sorrentino, A.M. Asiri, S. Anandan, Sol. Energy 208, 160 (2020)

    Article  CAS  Google Scholar 

  25. D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Carbon N. Y. 105, 33 (2016)

    Article  CAS  Google Scholar 

  26. C. Cari, K. Khairuddin, T. Y. Septiawan, P. M. Suciatmoko, D. Kurniawan, and A. Supriyanto, (2018) AIP Conf. Proc.

  27. P. Khammee, Y. Unpaprom, K. Whangchai, R. Ramaraj, Biomass Convers. Biorefinery 12, 1619 (2022)

    Article  CAS  Google Scholar 

  28. G. Calogero, I. Citro, C. Crupi, G. Carini, D. Arigò, G. Spinella, A. Bartolotta, G. Di Marco, Opt. Mater. (Amst). 88, 24 (2019)

    Article  CAS  Google Scholar 

  29. R. Anoua, H. Lifi, S. Touhtouh, M. El Jouad, A. Hajjaji, M. Bakasse, P. Płociennik, A. Zawadzka, Environ. Sci. Pollut. Res. Int. 28, 57860 (2021)

    Article  CAS  Google Scholar 

  30. A.M. Ammar, H.S.H. Mohamed, M.M.K. Yousef, G.M. Abdel-Hafez, A.S. Hassanien, A.S.G. Khalil, J. Nanomater. (2019). https://doi.org/10.1155/2019/1867271

    Article  Google Scholar 

  31. K.V. Hemalatha, S.N. Karthick, C. Justin Raj, N.Y. Hong, S.K. Kim, H.J. Kim, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 96, 305 (2012)

    Article  CAS  Google Scholar 

  32. T. Montagni, P. Enciso, J.J. Marizcurrena, S. Castro-Sowinski, C. Fontana, D. Davyt, M.F. Cerdá, Environ. Sustain. 1, 89 (2018)

    Article  Google Scholar 

  33. S. Mathew, N. Sajina, K.R. Haridas, Chemist 89, 2 (2016)

    Google Scholar 

  34. K. Mensah-Darkwa, F.O. Agyemang, D. Yeboah, S. Akromah, Mater. Today Proc. 38, 514 (2021)

    Article  CAS  Google Scholar 

  35. G. Genifer Silvena, B. JohnR. Anne Sarah Christinal MC. Santhosh Kumar S. Chakravarty A. Leo Rajesh, J Inorg Organomet Polym Mater 27, 1556 (2017)

    Article  Google Scholar 

  36. T. Raguram, K.S. Rajni, J. Sol-Gel Sci. Technol. 93, 202 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AS and LRA. The first draft of the manuscript was written by AS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leo Rajesh Asirvatham.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soosairaj, A., Pabba, D.P., Gunasekaran, A. et al. Synergetic impact of natural light harvesting materials to reduce the recombination rate and improve the device performance of dye sensitized solar cells. J Mater Sci: Mater Electron 34, 1748 (2023). https://doi.org/10.1007/s10854-023-11172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11172-5

Navigation